词条 | Sewage sludge | ||||||||||||||||||
释义 |
Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks. When fresh sewage or wastewater enters a primary settling tank, approximately 50% of the suspended solid matter will settle out in an hour and a half. This collection of solids is known as raw sludge or primary solids and is said to be "fresh" before anaerobic processes become active. The sludge will become putrescent in a short time once anaerobic bacteria take over, and must be removed from the sedimentation tank before this happens. This is accomplished in one of two ways. In an Imhoff tank, fresh sludge is passed through a slot to the lower story or digestion chamber where it is decomposed by anaerobic bacteria, resulting in liquefaction and reduced volume of the sludge. After digesting for an extended period, the result is called "digested" sludge and may be disposed of by drying and then landfilling. More commonly with domestic sewage, the fresh sludge is continuously extracted from the tank mechanically and passed to separate sludge digestion tanks that operate at higher temperatures than the lower story of the Imhoff tank and, as a result, digest much more rapidly and efficiently. "Biosolids" is a term often used in conjunction with reuse of sewage solids after sewage sludge treatment. Biosolids can be defined as organic wastewater solids that can be reused after stabilization processes such as anaerobic digestion and composting.[1] Opponents of sewage sludge reuse reject this term as a public relations term.{{Attribution needed|date=August 2016}} Classes of treated sewage sludge (US)Class A sludge is typically dried and pasteurized, and is also known as "exceptional" quality. Class B includes all sludge not classified as Class A. Class B sludge is typically "undigested" and is volatile. Both classes of sludge may still contain radioactive or pharmaceutical wastes.[2][3] Quantities producedThe amount of sewage sludge produced is proportional to the amount and concentration of wastewater treated, and it also depends on the type of wastewater treatment process used. It can be expressed as kg dry solids per cubic metre of wastewater treated. The total sludge production from a wastewater treatment process is the sum of sludge from primary settling tanks (if they are part of the process configuration) plus excess sludge from the biological treatment step. For example, primary sedimentation produces about 110–170 kg/ML of so-called primary sludge, with a value of 150 kg/ML regarded as being typical for municipal wastewater in the U.S. or Europe.[1] The sludge production is expressed as kg of dry solids produced per ML of wastewater treated; one mega litre (ML) is 103 m3. Of the biological treatment processes, the activated sludge process produces about 70–100 kg/ML of waste activated sludge, and a trickling filter process produces slightly less sludge from the biological part of the process: 60–100 kg/ML.[1] This means that the total sludge production of an activated sludge process that uses primary sedimentation tanks is in the range of 180–270 kg/ML, being the sum of primary sludge and waste activated sludge. United States municipal wastewater treatment plants in 1997 produced about 7.7 million dry tons of sewage sludge, and about 6.8 million dry tons in 1998 according to EPA estimates.[4] As of 2004, about 60% of all sewage sludge was applied to land as a soil amendment and fertilizer for growing crops.[5] Production of sewage sludge can be reduced by conversion from flush toilets to dry toilets such urine-diverting dry toilets and composting toilets.[6] ContaminantsPathogensBacteria in Class A sludge products can actually regrow under certain environmental conditions.[7] Pathogens could easily remain undetected in untreated sewage sludge.[8] Pathogens are not a significant health issue if sewage sludge is properly treated and site-specific management practices are followed.[9] Micro-pollutantsMicro-pollutants{{clarify|What is a "micro-pollutant"? Undefined, uncited.|date=June 2018}} can become concentrated in sewage sludge.[10] Each of these disposal options comes with myriad potential — and in some cases proven — human health and environment impacts.[11][12] Sterols and other hormones have been detected.[15]Heavy metalsOne of the main concerns in the treated sludge is the concentrated metals content (arsenic, cadmium, copper, etc., some of which are also critical plant micronutrients{{clarify|Which, and how are they "micronutrients"? Define.|date=June 2018}}); certain metals are regulated while others are not.[13] Leaching methods can be used to reduce the metal content and meet the regulatory limit.[14] In 2009 the EPA released the Targeted National Sewage Sludge Study, which reports on the level of metals, chemicals, hormones, and other materials present in a statistical sample of sewage sludges.[15] Some highlights include:
Other hazardous substancesSewage treatment plants receive various forms of hazardous waste from hospitals, nursing homes, industry and households. Low levels of constituents such as PCBs, dioxin, and brominated flame retardants, may remain in treated sludge.[16][17] There are potentially thousands other components of sludge that remain untested/undetected disposed of from modern society that also end up in sludge (pharmaceuticals, nano particles, etc.) which have been proven to be hazardous to both human and ecological health.[10] In 2013 in South Carolina PCBs were discovered in very high levels in wastewater sludge. The problem was not discovered until thousands of acres of farm land in South Carolina were contaminated by this hazardous material. SCDHEC issued emergency regulatory order banning all PCB laden sewage sludge from being land applied on farm fields or deposited into landfills in South Carolina.[18][19] Also in 2013, after DHEC request, the city of Charlotte decided to stop land applying sewage sludge in South Carolina while authorities investigated the source of PCB contamination.[20] In February 2014, the city of Charlotte admitted PCBs have entered their sewage treatment centers as well.[21] Contaminants of concern in sewage sludge are plasticizers, PDBEs, and others generated by human activities, including personal care products and medicines. Synthetic fibers from fabrics persist in treated sewage sludge as well as in biosolids-treated soils and may thus serve as an indicator of past biosolids application.[22] Pollutant ceiling concentrationThe term "pollutant" is defined as part of the EPA 503 rule. The components of sludge have pollutant limits defined by the EPA. "A Pollutant is an organic substance, an inorganic substance, a combination of organic and inorganic substances, or a pathogenic organism that, after discharge and upon exposure, ingestion, inhalation, or assimilation into an organism either directly from the environment or indirectly by ingestion through the food chain, could, on the basis of information available to the Administrator of EPA, cause death, disease, behavioral abnormalities, cancer, genetic mutations, physiological malfunctions (including malfunction in reproduction), or physical deformations in either organisms or offspring of the organisms."[23] The maximum component pollutant limits by the US EPA are:
Treatment{{Main|Sewage sludge treatment}}Sewage sludge treatment is the process of removing contaminants from wastewater. Sewage sludge is produced from the treatment of wastewater in sewage treatment plants and consists of two basic forms — raw primary sludge and secondary sludge, also known as activated sludge in the case of the activated sludge process. Sewage sludge is usually treated by one or several of the following treatment steps: lime stabilization, thickening, dewatering, drying, anaerobic digestion or composting. Some treatment processes, such as composting and alkaline stabilization, that involve significant amendments may affect contaminant strength and concentration: depending on the process and the contaminant in question, treatment may decrease or in some cases increase the bioavailability and/or solubility of contaminants.[24] Following treatment, sewage sludge is either landfilled, incinerated, applied on agricultural land or, in some cases, retailed or given away for free to the general public.[25][26] Health risksIn 2011, the EPA commissioned a study at the United States National Research Council (NRC) to determine the health risks of sludge.[27] In this document the NRC pointed out that many of the dangers of sludge are unknown and unassessed. Additionally "Regulations that limit contact with biosolids do not prevent environmental processes in the conceptual model such as aerosolization or erosion and the death or multiplication of pathogens."{{citation needed|date= June 2017}} The National Research Council published "Biosolids Applied to Land: Advancing Standards and Practices" in July 2002. The NRC concluded that while there is no documented scientific evidence that sewage sludge regulations have failed to protect public health, there is persistent uncertainty on possible adverse health effects.[28] The NRC noted that further research is needed and made about 60 recommendations for addressing public health concerns, scientific uncertainties, and data gaps in the science underlying the sewage sludge standards. The EPA responded with a commitment to conduct research addressing the NRC recommendations.[29] Residents living near Class B sludge processing sites may experience asthma or pulmonary distress due to bioaerosols released from sludge fields.[30] A 2004 survey of 48 individuals near affected sites found that most reported irritation symptoms, about half reported an infection within a month of the application, and about a fourth were affected by Staphylococcus aureus, including two deaths. The number of reported S. aureus infections was 25 times as high as in hospitalized patients, a high-risk group. The authors point out that regulations call for protective gear when handling Class B biosolids and that similar protections could be considered for residents in nearby areas given the wind conditions.[31] Khuder, Milz, Bisesi, Vincent, McNulty, and Czajkowski (as cited by Harrison and McBride of the Cornell Waste Management Institute in Case for Caution Revisited: Health and Environmental Impacts of Application of Sewage Sludges to Agricultural Land) conducted a health survey of persons living in close proximity to Class B sludged land.[32] A sample of 437 people exposed to Class B sludge (living within {{convert|1|mi|km|adj=on}} of sludged land) - and using a control group of 176 people not exposed to sludge (not living within {{convert|1|mi|km|adj=on}} of sludged land) reported the following: {{quote|"Results revealed that some reported health-related symptoms were statistically significantly elevated among the exposed residents, including excessive secretion of tears, abdominal bloating, jaundice, skin ulcer, dehydration, weight loss, and general weakness. The frequency of reported occurrence of bronchitis, upper respiratory infection, and giardiasis were also statistically significantly elevated. The findings suggest an increased risk for certain respiratory, gastrointestinal, and other diseases among residents living near farm fields on which the use of biosolids was permitted."|sign=Khuder, et al.|source=Health Survey of Residents Living near Farm Fields Permitted to Receive Biosolids[32]}} Although correlation does not imply causation, such extensive correlations may lead reasonable people to conclude that precaution is necessary in dealing with sludge and sludged farmlands. Harrison and Oakes suggest that, in particular, "until investigations are carried out that answer these questions (...about the safety of Class B sludge...), land application of Class B sludges should be viewed as a practice that subjects neighbors and workers to substantial risk of disease."[38] They further suggest that even Class A treated sludge may have chemical contaminants (including heavy metals, such as lead) or endotoxins present, and a precautionary approach may be justified on this basis, though the vast majority of incidents reported by Lewis, et al. have been correlated with exposure to Class B untreated sludge and not Class A treated sludge. A 2005 report by the state of North Carolina concluded that "a surveillance program of humans living near application sites should be developed to determine if there are adverse health effects in humans and animals as a result of biosolids application."[33] DisposalAfter treatment, and dependent upon the quality of sludge produced (for example with regards to heavy metal content), sewage sludge is most commonly either disposed of in landfills, dumped in the ocean or applied to land for its fertilizing properties, as pioneered by the product Milorganite. Landfill{{expand section|date=June 2018}}Ocean dumpingIt used to be common practice to dump sewage sludge into the ocean, however, this practice has stopped in many nations due to environmental concerns as well to domestic and international laws and treaties.{{citation needed|date=June 2017}} Land application{{Main|Biosolids}}Biosolids is a term widely used to denote the byproduct of domestic and commercial sewage and wastewater treatment that is to be used in agriculture. National regulations that dictate the practice of land application of treated sewage sludge differ widely and e.g. in the US there are widespread disputes about this practice. Depending on their level of treatment and resultant pollutant content, biosolids can be used in regulated applications for non-food agriculture, food agriculture,[34] or distribution for unlimited use. Treated biosolids can be produced in cake, granular, pellet, or liquid form and are spread over land before being incorporated into the soil or injected directly into the soil by specialist contractors. Such use was pioneered by the production of Milorganite in 1926. Use of sewage sludge has shown an increase in level of soil available phosphorus and soil salinity.[35] The findings of a 20-year field study of air, land, and water in Arizona, concluded that use of biosolids is sustainable and improves the soil and crops.[36] Other studies report that plants uptake large quantities of heavy metals and toxic pollutants that are retained by produce, which is then consumed by humans.[37][38][39] A PhD thesis studying the addition of sludge to neutralize soil acidity concluded that the practice was not recommended if large amounts are used because the sludge produces acids when it oxidizes.[40] Studies have indicated that pharmaceuticals and personal care products, which often adsorb to sludge during wastewater treatment, can persist in agricultural soils following biosolid application.[41] Some of these chemicals, including potential endocrine disruptor Triclosan, can also travel through the soil column and leach into agricultural tile drainage at detectable levels.[41][42] Other studies, however, have shown that these chemicals remain adsorbed to surface soil particles, making them more susceptible to surface erosion than infiltration.[43][44] These studies are also mixed in their findings regarding the persistence of chemicals such as triclosan, triclocarban, and other pharmaceuticals. The impact of this persistence in soils is unknown, but the link to human and land animal health is likely tied to the capacity for plants to absorb and accumulate these chemicals in their consumed tissues. Studies of this kind are in early stages, but evidence of root uptake and translocation to leaves did occur for both triclosan and triclocarban in soybeans.[45] This effect was not present in corn when tested in a different study.[42] A cautionary approach to land application of biosolids has been advocated by some for regions where soils have lower capacities for toxics absorption or due to the presence of unknowns in sewage biosolids.[46][11] In 2007 the Northeast Regional Multi-State Research Committee (NEC 1001) issued conservative guidelines tailored to the soils and conditions typical of the northeastern US.[47] Use of sewage sludge is prohibited for produce to be labeled USDA-certified organic.[48] In 2014 the United States grocery chain Whole Foods banned produce grown in sewage sludge.[49][50] Treated sewage sludge has been used in the UK, Europe and China agriculturally for more than 80 years, though there is increasing pressure in some countries to stop the practice of land application due to farm land contamination[51] and public outrage.[52][53][54] In the 1990s there was pressure in some European countries to ban the use of sewage sludge as a fertilizer. Switzerland, Sweden, Austria, and others introduced a ban. Since the 1960s there has been cooperative activity with industry to reduce the inputs of persistent substances from factories. This has been very successful and, for example, the content of cadmium in sewage sludge in major European cities is now only 1% of what it was in 1970.[55] IncinerationSludge can also be incinerated in sludge incineration plants which comes with its own set of environmental concerns (air pollution, disposal of the ash). Pyrolysis of the sludge to create syngas and potentially biochar is possible, as is combustion of biofuel produced from drying sewage sludge or incineration in a waste-to-energy facility for direct production of electricity and steam for district heating or industrial uses. Thermal processes can greatly reduce the volume of the sludge, as well as achieve remediation of all or some of the biological concerns. Direct waste-to-energy incineration and complete combustion systems (such as the Gate 5 Energy System) will require multi-step cleaning of the exhaust gas, to ensure no hazardous substances are released. In addition, the ash produced by incineration or incomplete combustion processes (such as fluidized-bed dryers) may be difficult to use without subsequent treatment due to high heavy metal content; solutions to this include leaching of the ashes to remove heavy metals or in the case of ash produced in a complete-combustion process, or with biochar produced from a pyrolytic process, the heavy metals may be fixed in place and the ash material readily usable as a LEEDs preferred additive to concrete or asphalt.[56] Examples of other ways to use dried sewage sludge as an energy resource include the Gate 5 Energy System, an innovative process to power a steam turbine using heat from burning milled and dried sewage sludge, or combining dried sewage sludge with coal in coal-fired power stations. In both cases this allows for production of electricity with less carbon-dioxide emissions than conventional coal-fired power stations.[57] RegulationEuropean UnionEuropean legislation on dangerous substances has eliminated the production and marketing of some substances that have been of historic concern such as persistent organic micropollutants. The European Commission has said repeatedly that the "Directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture" (86/278/EEC) has been very successful in that there have been no cases of adverse effect where it has been applied. The EC encourages the use of sewage sludge in agriculture because it conserves organic matter and completes nutrient cycles. Recycling of phosphate is regarded as especially important because the phosphate industry predicts that at the current rate of extraction the economic reserves will be exhausted in 100 or at most 250 years.[58] Phosphate can be recovered with minimal capital expenditure as technology currently exists, but municipalities have little political will to attempt nutrient extraction, instead opting for a "take all the other stuff" mentality.[59]{{unreliable source?|date= June 2017}} United States{{cleanup|section|reason=content of subheadings needs to be integrated into the section|date=June 2018}}According to the EPA, biosolids that meet treatment and pollutant content criteria of Part 503.13 "can be safely recycled and applied as fertilizer to sustainably improve and maintain productive soils and stimulate plant growth." However, they can not be disposed of in a sludge only landfill under Part 503.23 because of high chromium levels and boundary restrictions. Biosolids that meet the Class B pathogen treatment and pollutant criteria, in accordance with the EPA "Standards for the use or disposal of sewage sludge" (40 CFR Part 503), can be land applied with formal site restrictions and strict record keeping.[60] Biosolids that meet Class A pathogen reduction requirements or equivalent treatment by a "Process to Further Reduce Pathogens" (PFRP) have the least restrictions on use. PFRPs include pasteurization, heat drying, thermophilic composting (aerobic digestion, most common method), and beta or gamma ray irradiation.[61] The EPA Office of the Inspector General (OIG) completed two assessments in 2000 and 2002 of the EPA sewage sludge program. The follow-up report in 2002 documented that "the EPA cannot assure the public that current land application practices are protective of human health and the environment." The report also documented that there had been an almost 100% reduction in EPA enforcement resources since the earlier assessment. This is probably the greatest issue with the practice: under both the federal program operated by the EPA and those of the several states, there is limited inspection and oversight by agencies charged with regulating these practices. To some degree, this lack of oversight is a function of the perceived (by the regulatory agencies) benign nature of the practice. However, a greater underlying issue is funding. Few states and the US EPA have the discretionary funds necessary to establish and implement a full enforcement program for biosolids.[62] As detailed in the 1995 Plain English Guide to the Part 503 Risk Assessment, the EPA's most comprehensive risk assessment was completed for biosolids.[63] Prior to 1991Since 1884 when sewage was first treated the amount of sludge has increased along with population and more advanced treatment technology (secondary treatment in addition to primary treatment). In the case of New York City, at first the sludge was discharged directly along the banks of rivers surrounding the city, then later piped further into the rivers, and then further still out into the harbor.[64] In 1924, to relieve a dismal condition in New York Harbor, New York City began dumping sludge at sea at a location in the New York Bight called the 12-Mile Site. This was deemed a successful public health measure and not until the late 1960s was there any examination of its consequences to marine life or to humans. There was accumulation of sludge particles on the seafloor and consequent changes in the numbers and types of benthic organisms. In 1970 a large area around the site was closed to shellfishing. From then until to 1986, the practice of dumping at the 12-Mile Site came under increasing pressure stemming from a series of untoward environmental crises in the New York Bight that were attributed partly to sludge dumping. In 1986, sludge dumping was moved still further seaward to a site over the deep ocean called the 106-Mile Site. Then, again in response to political pressure arising from events unrelated to ocean dumping, the practice ended entirely in 1992. Since 1992, New York City sludge has been applied to land (outside of New York state). The wider question is whether or not changes on the sea floor caused by the portion of sludge that settles are severe enough to justify the added operational cost and human health concerns of applying sludge to land. Since 1991After the 1991 Congressional ban on ocean dumping, the U.S. Environmental Protection Agency (EPA) instituted a policy of digested sludge reuse on agricultural land. The US EPA promulgated regulations – 40 CFR Part 503 – that continued to allow the use of biosolids on land as fertilizers and soil amendments which had been previously allowed under Part 257. The EPA promoted biosolids recycling throughout the 1990s. The EPA's Part 503 regulations were developed with input from university, EPA, and USDA researchers from around the country and involved an extensive review of the scientific literature and the largest risk assessment the agency had conducted to that time. The Part 503 regulations became effective in 1993.[65] Sludge in the courts
References1. ^1 2 {{cite book|title = Wastewater engineering : treatment and reuse|last1= Tchobanoglous|first1= George|last2= Burton|first2= Franklin L.|last3= Stensel|first3= H. David|publisher = Metcalf & Eddy|isbn = 978-0071122504|page = 1449|edition = 4|year = 2003}} 2. ^{{cite web|title= Pharmaceutical waste management|url=http://premierinc.com/safety/topics/pharma-waste/|website= Premier|archive-url= https://web.archive.org/web/20070525065015/https://www.premierinc.com/safety/topics/pharma-waste/|archive-date= 25 May 2007|access-date= 30 May 2017}} 3. ^{{cite web|url= http://spectrum.ieee.org/tech-talk/energy/nuclear/radioactive-sludge-collects-in-japans-sewage-treatment-plants|last= Boyd|first= John|title= Radioactive Sludge Collects in Japan's Sewage Treatment Plants|website= IEEE|date= 26 August 2011|access-date= 30 May 2017}} 4. ^{{cite report|title= Biosolids Generation, Use, and Disposal in The United States|url= https://www.epa.gov/sites/production/files/2015-07/documents/biosolids_generation_use_disposal_in_u.s_1999.pdf|date= September 1999|publisher= EPA|page= 2|id= EPA530-R-99-009|access-date= 30 May 2017}} 5. ^{{cite journal|last1= Lu|first1= Qin|last2= He|first2= Zhenli H.|last3= Stoffella|first3= Peter J.|editor-last= Torri|editor-first= Silvana I.|title= Land Application of Biosolids in the USA: A Review|journal= Applied and Environmental Soil Science|volume= 2012|year= 2012|page= 4|id= 201462|doi= 10.1155/2012/201462|doi-access=free}} 6. ^{{cite web|url= http://www.susana.org/_resources/documents/default/2-874-technology-review-of-uddts-18-june-2013.pdf|title= Technology Review of Urine-diverting dry toilets (UDDTs)|last1= Rieck|first1= Christian|last2= von Münch|first2= Elisabeth|last3= Hoffmann|first3= Heike|date= December 2012|website= Susana|publisher= GIZ|access-date= 5 June 2017}} 7. ^{{cite journal |pmid=16749313 |date= April 2006 |last1=Jolis |first1= Domènec|title=Regrowth of fecal coliforms in class A biosolids |volume=78 |issue=4 |pages=442–5 |journal=Water Environment Research|doi=10.2175/106143005X90074}} 8. ^{{cite journal|first1= David L.|last1= Lewis|first2= David K.|last2= Gattie|title= Pathogen Risks From Applying Sewage Sludge to Land|journal= Environmental Science & Technology|date= July 2002|volume= 36|issue= 13|pages= 286A–293A|doi= 10.1021/es0223426|doi-access= free|laysummary= https://www.sciencedaily.com/releases/2002/07/020730075144.htm|laysource= ScienceDaily|laydate= 30 July 2002}} 9. ^{{cite journal|last1= Harrison|first1= Ellen Z.|last2= Oakes|first2= Summer Rayne|year= 2003|url= http://sludgenews.org/resources/documents/Harrison_NS.pdf|title= Investigation of alleged health incidents associated with land application of sewage sludges|journal= New Solutions|volume= 12|issue= 4|pages= 387–408|pmid= 17208785|doi= 10.2190/0FJ0-T6HJ-08EM-HWW8|access-date= 30 May 2017|hdl= 1813/5319}} 10. ^1 {{Cite web|url= http://water.epa.gov/scitech/wastetech/biosolids/tnsss-overview.cfm|title= Biosolids: Targeted National Sewage Sludge Survey Report — Overview|date= January 2009|website= EPA|id= EPA 822-R-08-014|access-date= 12 January 2015|archive-url= https://web.archive.org/web/20150216032645/http://water.epa.gov/scitech/wastetech/biosolids/tnsss-overview.cfm|archive-date= 16 February 2015}} 11. ^1 {{Cite web|url = http://cwmi.css.cornell.edu/case.pdf|last = Harrison|first = Ellen Z|last2 = McBride|first2 = Murray|title = Case for Caution Revisited: Health and Environmental Impacts of Application of Sewage Sludges to Agricultural Land|date = March 2009|publisher = Cornell Waste Management Institute|accessdate = 16 January 2016}} 12. ^{{Cite web|url= http://www.bioscienceresource.org/sewage-sludge-biosolids-land-application-health-risks-and-regulation-2/|title= Sewage Sludge (Biosolids) — land application, health risks, and regulatory failure|website= Bioscience Resource Project|access-date= 30 May 2017}} 13. ^{{cite journal|last= McBride|first= Murray B.|url= https://www.researchgate.net/publication/222521560|title=Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks?|date= October 2003|journal= Advances in Environmental Research|volume=8 |pages=5–19|doi=10.1016/S1093-0191(02)00141-7|access-date= 30 May 2017}} 14. ^{{cite journal|last1= Turek|first1= Marian|last2= Korolewicz|first2= Teofil|last3= Ciba|first3= Jerzy|title=Removal of Heavy Metals from Sewage Sludge Used as Soil Fertilizer |year=2005 |journal=Soil and Sediment Contamination |volume=14 |issue=2 |pages=143–54|doi=10.1080/15320380590911797}} 15. ^1 {{cite web|title= Targeted National Sewage Sludge Survey Statistical Analysis Report|url= http://www.epa.gov/waterscience/biosolids/tnsss-stat.pdf|date= January 2009|publisher= EPA|id= EPA-822-R-08-018|access-date= 6 August 2009|archive-url= https://web.archive.org/web/20090711032817/http://www.epa.gov/waterscience/biosolids/tnsss-stat.pdf|archive-date= 11 July 2009}} 16. ^{{cite web|url= http://faculty.washington.edu/clh/understandingbiosolids/Ch7organics.pdf|title= Understanding Biosolids|last= Henry|first= Christopher|website= University of Washington|date= January 2005|access-date= 1 June 2017|archive-url= https://web.archive.org/web/20120221223427/http://faculty.washington.edu/clh/understandingbiosolids/Ch7organics.pdf|archive-date= 21 February 2012}} 17. ^{{cite web|url= http://toxics.usgs.gov/highlights/biosolids.html|title= Household Chemicals and Drugs Found in Biosolids from Wastewater Treatment Plants|website= United States Geological Survey|date= 16 November 2016|access-date= 1 June 2017}} 18. ^{{cite web|url= http://www.scdhec.gov/administration/news/2013/nr20130925-01.htm|last= Plowden|first= Mark|title= DHEC Issues Emergency Regulation, Expands Investigation into PCBs Found at Water Treatment Plants|website= SCDHEC|date= 25 September 2013|access-date= 1 June 2017|archive-url= https://web.archive.org/web/20130926153115/http://www.scdhec.gov/administration/news/2013/nr20130925-01.htm|archive-date= 26 September 2013}} 19. ^{{cite web|url= http://www.scdhec.gov/administration/news/docs/PCBEmergencyRegFINAL.pdf|title= Emergency Regulation for Management of Wastewater System Sludge|website= SCDHEC|date= 25 October 2013|access-date= 1 June 2017}} 20. ^{{cite web|url= http://www.charlotteobserver.com/news/local/article9112850.html|last= Henderson|first= Bruce|title= Charlotte PCB cleanup costs to top $1.3 million|website= The Charlotte Observer|date= 14 April 2014|access-date= 1 June 2017}} 21. ^{{cite web|url= http://www.charlotteobserver.com/news/local/article9095525.html|last1= Henderson|first1= Bruce|last2= Lyttle|first2= Steve|last3= Bethea|first3= April|title= Task force named to probe chemical dumping|website= The Charlotte Observer|date= 7 February 2014|access-date= 1 June 2017}} 22. ^{{cite journal |doi=10.1016/j.envpol.2005.04.013 |title=Synthetic fibers as an indicator of land application of sludge |year=2005 |last1=Zubris |first1=Kimberly Ann V. |last2=Richards |first2=Brian K. |journal=Environmental Pollution |volume=138 |issue=2 |pages=201–11 |pmid=15967553}} 23. ^{{cite report|title=Code of Federal Regulations|volume= 40|issue= 29|chapter= 503.9|url=http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol29/pdf/CFR-2010-title40-vol29-sec503-9.pdf|website= GPO|access-date= 1 June 2017}} 24. ^{{cite journal |first1=Brian K. |last1=Richards |first2=John H. |last2=Peverly |first3=Tammo S. |last3=Steenhuis |first4=Barry N. |last4=Liebowitz |year=1997 |title=Effect of Processing Mode on Trace Elements in Dewatered Sludge Products |journal=Journal of Environmental Quality |volume=26 |issue=3 |pages=782–8 |doi=10.2134/jeq1997.00472425002600030027x}} 25. ^{{Cite web|url= http://www.sludgenews.org/about/sludgenews.aspx?id=5|title= Branded products containing sewage sludge|website= Sludge News|access-date= 16 January 2015|date= 2007-11-30}} 26. ^{{Cite news|url= http://www.prwatch.org/news/2013/05/12103/trade-group-offers-free-sewage-sludge-compost-community-gardens-million-tomato-ca|title= Trade Group Offers Free Sewage Sludge "Compost" to Community Gardens in "Million Tomato Campaign" for Food Banks|last= Wilce|first= Rebekah|date= 9 May 2013|website= PRWatch|access-date= 16 January 2015}} 27. ^{{cite web|url= https://www.commondreams.org/view/2012/03/18-2|title= New Toxic Sludge PR and Lobbying Effort Gets Underway|last= Jerving|first= Sara|date= 18 March 2012|website= CommonDreams|agency= PRWatch|access-date= 2 June 2017}} 28. ^{{cite book|author= |url= https://www.nap.edu/read/10426/chapter/1|title= Biosolids Applied to Land: Advancing Standards and Practices|publisher= National Academy of Sciences|location= Washington, DC|year= 2002|isbn= 978-0-309-57036-7|doi= 10.17226/10426}} 29. ^{{cite web|url= http://www.epa.gov/waterscience/biosolids/nrcreprestfs.htm|title= Use and Disposal of Biosolids|website= EPA|access-date= 5 June 2017|archive-url= https://web.archive.org/web/20080326073717/http://www.epa.gov/waterscience/biosolids/nrcreprestfs.htm|archive-date= 26 March 2008|date= 2016-11-08}} 30. ^{{cite journal |doi=10.1093/annhyg/meg032 |title=Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects |year=2003 |last1=Douwes |first1=J. |journal=Annals of Occupational Hygiene |volume=47 |issue=3 |pages=187–200 |pmid=12639832 |last2=Thorne |first2=P |last3=Pearce |first3=N |last4=Heederik |first4=D}} 31. ^{{cite journal |doi=10.1186/1471-2458-2-11 |year=2002 |last1=Lewis |first1=David L |last2=Gattie |first2=David K |last3=Novak |first3=Marc E |last4=Sanchez |first4=Susan |last5=Pumphrey |first5=Charles |journal=BMC Public Health |volume=2 |page=11 |pmid=12097151 |title=Interactions of pathogens and irritant chemicals in land-applied sewage sludges (biosolids) |pmc=117218}} 32. ^1 {{cite journal |doi=10.3200/AEOH.62.1.5-11 |title=Health Survey of Residents Living Near Farm Fields Permitted to Receive Biosolids |year=2007 |last1=Khuder |first1=Sadik |last2=Milz |first2=Sheryl A. |last3=Bisesi |first3=Michael |last4=Vincent |first4=Robert |last5=McNulty |first5=Wendy |last6=Czajkowski |first6=Kevin |journal=Archives of Environmental & Occupational Health |volume=62 |pages=5–11 |pmid=18171641 |issue=1|citeseerx=10.1.1.534.8483 }} 33. ^{{cite web|url=http://sludgevictims.com/NC-Human-health-risk.html|title=Human Health Risk|website= Sludge Victims|access-date= 5 June 2017|archive-url= https://web.archive.org/web/20160304121906/http://sludgevictims.com/NC-Human-health-risk.html|archive-date= 4 March 2016}} 34. ^1 {{cite journal |doi=10.2190/0FJ0-T6HJ-08EM-HWW8 |title=Investigation of alleged health incidents associated with land application of sewage sludges |year=2003 |last1=Harrison |first1=Ellen Z. |last2=Oakes |first2=Summer Rayne |journal=New Solutions |volume=12 |issue=4 |pages=387–408 |pmid=17208785|hdl=1813/5319 }} 35. ^{{cite journal|last1= Hosseinpur|first1= Alireza|last2= Pashamokhtari|first2= Hamed|title= The effects of incubation on phosphorus desorption properties, phosphorus availability, and salinity of biosolids-amended soils|volume= 69|issue= 3|journal= Environmental Earth Sciences|pages=899–908|doi= 10.1007/s12665-012-1975-6|year= 2013}} 36. ^{{cite web|url= http://cals.arizona.edu/pubs/consumer/az1426.pdf|title= Biosolids land use in Arizona|last= Artiola|first= Janick F.|date= November 2006|website= University of Arizona|access-date= 2 June 2017|archive-url= https://web.archive.org/web/20080309015544/http://cals.arizona.edu/pubs/consumer/az1426.pdf|archive-date= 9 March 2008}} 37. ^{{cite journal|last1= McBride|first1= Murray B.|last2= Richards|first2= Brian K.|last3= Steenhuis|first3= Tammo S.|last4= Spiers|first4= G.|date= May–June 2000|title= Molybdenum Uptake by Forage Crops Grown on Sewage Sludge-Amended Soils in the Field and Greenhouse|url= http://soilandwater.bee.cornell.edu/publications/McBrideJEQ00.pdf|journal= Journal of Environmental Quality|volume= 29|issue= 3|pages=848–54|doi= 10.2134/jeq2000.00472425002900030021x|access-date= 2 June 2017}} 38. ^{{cite journal|last1=Kim |first1=Bojeong |last2=McBride |first2=Murray B. |last3=Richards |first3=Brian K. |last4=Steenhuis |first4=Tammo S.|title=The long-term effect of sludge application on Cu, Zn, and Mo behavior in soils and accumulation in soybean seeds |year=2007|journal=Plant and Soil |volume=299|issue=1–2 |pages=227–36|doi=10.1007/s11104-007-9377-3}} 39. ^{{cite journal|title=Molybdenum and Copper Uptake by Forage Grasses and Legumes Grown on a Metal‐Contaminated Sludge Site |year=2005 |last1=McBride |first1=Murray B. |journal=Communications in Soil Science and Plant Analysis |volume=36 |issue=17–18 |pages=2489–501 |doi=10.1080/00103620500255840 }} 40. ^{{cite web|url= http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2016&hizk=I|last= Bulegoa|first= Komunikazio|title= Adding high doses of sludge to neutralize soil acidity not advisable|date= 8 January 2009|website= Basque Research|access-date= 2 June 2017}} 41. ^1 {{cite journal|last1= Edwards|first1= M.|last2= Topp|first2= E.|last3= Metcalfe|first3= CD.|last4= Li|first4= H.|last5= Gottschall|first5= N.|last6= Bolton|first6= P.|last7= Curnoe|first7= W.|last8= Payne|first8= M.|last9= Beck|first9= A.|last10= Kleywegt|first10= S.|last11= Lapen|first11= DR.|title= Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field|journal= Science of the Total Environment|date= 1 July 2009|volume= 407|issue= 14|pages= 4220–30|pmid= 19394680|doi= 10.1016/j.scitotenv.2009.02.028}} 42. ^1 {{cite journal |doi=10.1002/etc.66 |title=Triclocarban, triclosan, polybrominated diphenyl ethers, and 4-nonylphenol in biosolids and in soil receiving 33-year biosolids application |year=2010 |last1=Xia |first1=Kang |last2=Hundal |first2=Lakhwinder S. |last3=Kumar |first3=Kuldip |last4=Armbrust |first4=Kevin |last5=Cox |first5=Albert E. |last6=Granato |first6=Thomas C. |journal=Environmental Toxicology and Chemistry |volume=29 |issue=3 |pages=597–605 |pmid=20821484}} 43. ^{{cite journal |doi=10.1016/j.watres.2009.03.004 |title=Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids |year=2009 |last1=Cha |first1=Jongmun |last2=Cupples |first2=Alison M. |journal=Water Research |volume=43 |issue=9 |pages=2522–30 |pmid=19327812}} 44. ^{{cite journal |doi=10.1016/j.chemosphere.2010.07.040 |title=Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils |year=2010 |last1=Cha |first1=Jongmun |last2=Cupples |first2=Alison M. |journal=Chemosphere |volume=81 |issue=4 |pages=494–9 |pmid=20705327}} 45. ^{{cite journal |doi=10.1021/es1011115 |title=Uptake of Pharmaceutical and Personal Care Products by Soybean Plants from Soils Applied with Biosolids and Irrigated with Contaminated Water |year=2010 |last1=Wu |first1=Chenxi |last2=Spongberg |first2=Alison L. |last3=Witter |first3=Jason D. |last4=Fang |first4=Min |last5=Czajkowski |first5=Kevin P. |journal=Environmental Science & Technology |volume=44 |issue=16 |pages=6157–61 |pmid=20704212}} 46. ^{{cite journal |doi=10.1504/IJEP.1999.002247 |title=Land application of sewage sludges: An appraisal of the US regulations |year=1999 |last1=Harrison |first1=Ellen Z. |last2=McBride |first2=Murray B. |last3=Bouldin |first3=David R. |journal=International Journal of Environment and Pollution |volume=11 |pages=1–36|hdl=1813/5299 }} 47. ^{{cite web|url= https://ecommons.cornell.edu/bitstream/handle/1813/7934/NEGuidelinesE317.pdf?sequence=1&isAllowed=y|last1= Barker|first1= Allen|last2= Harrison|first2= Ellen|last3= Hay|first3= Anthony|last4= Krogmann|first4= Uta|last5= McBride|first5= Murray|last6= McDowell|first6= William|last7= Richards|first7= Brian|last8= Steenhuis|first8= Tammo|last9= Stehouwer|first9= Richard|title= Guidelines for Application of Sewage Biosolids to Agricultural Lands in the Northeastern U.S.|date= April 2007|website= Cornell University|access-date= 2 June 2017}} 48. ^{{cite web|title= Understanding Organic Food Labels, Benefits, and Claims|website= HelpGuide |url=http://www.helpguide.org/life/organic_foods_pesticides_gmo.htm|access-date= 2 June 2017|archive-url= https://web.archive.org/web/20120109004544/http://www.helpguide.org/life/organic_foods_pesticides_gmo.htm|archive-date= 9 January 2012}} 49. ^{{cite news|url=http://www.foodrepublic.com/2014/01/23/whole-foods-draws-line-sludge|title=Whole Foods Draws A Line In The Sludge|website=Food Republic|date=23 January 2014|access-date= 26 February 2017}} 50. ^{{cite news|url=https://www.npr.org/blogs/thesalt/2014/01/17/263370333/whole-foods-bans-produce-grown-with-sludge-but-who-wins|title=Whole Foods Bans Produce Grown With Sludge. But Who Wins?|last=Barclay|first=Eliza|website=NPR|date= 21 January 2014|access-date= 26 February 2017}} 51. ^{{cite web|url= http://e360.yale.edu/features/chinas_toxic_trail_leads_from_factories_to_food|title= In China's Heartland, A Toxic Trail Leads from Factories to Fields to Food|last= Guangwei|first= He|date= 7 July 2014|website= Yale Environment 360|access-date= 5 June 2017}} 52. ^{{cite web|url= https://www.pressreader.com/usa/sun-sentinel-broward-edition/20151221/281487865308034|title= Sewage sludge prompts outrage|last= Reid|first= Andy|date= 21 December 2015|website= PressReader|publisher= Sun Sentinel|access-date= 5 June 2017}} 53. ^{{cite web|title= Outrage as 'Poohaven' sewage plant is approved|url=http://www.theargus.co.uk/news/3576502.Outrage_as__Poohaven__sewage_plant_is_approved/|last= Godfrey|first= Miles|date= 7 August 2008|website= The Argus|access-date= 5 June 2017}} 54. ^{{cite web|url=http://www.alternet.org/health/145904/outrage_in_san_francisco:_city_gives_away_'organic'_compost_to_residents_containing_toxic_sewage_sludge/|title= Outrage in San Francisco: City Gives Residents 'Organic' Compost Containing Toxic Sewage Sludge|last= Richardson|first= Jill|date= 4 March 2010|website= AlterNet|access-date= 5 June 2017}} 55. ^{{cite book|last= Zorpas|first= Antonis A.|chapter= Contribution of Zeolites in Sewage Sludge Composting|title= Handbook of Natural Zeolites|year= 2012|chapter-url= https://books.google.com/books?id=p88zmymzTMUC&pg=PA289&lpg=PA289&dq=the+content+of+cadmium+in+sewage+sludge+in+major+European+cities+is+now+only+1%25+of+what+it+was+in+1970&source=bl&ots=E24caTa7TP&sig=ia71JWawo2A1zYybuluvSl6gOio&hl=en&sa=X&ved=0ahUKEwiF0o6rhKbUAhXFPCYKHbZDA_8Q6AEILTAB#v=onepage&q=the%20content%20of%20cadmium%20in%20sewage%20sludge%20in%20major%20European%20cities%20is%20now%20only%201%25%20of%20what%20it%20was%20in%201970&f=false|publisher= Bentham Science|page= 289|editor-last1= Inglezakis|editor-first1= Vassilis J.|editor-last2= Zorpas|editor-first2= Antonis A.|isbn= 978-1-60805-446-6}} 56. ^{{cite journal|title= Sewage Sludge as Raw-Material in Asphalt Mixtures|year= 2013|last1= Ingunza|first1= Maria del Pilar Durante|last2= Júnior|first2= Olavo Francisco dos Santos|last3= Medeiros|first3= Sayonara Andrade|journal= Advanced Materials Research|volume= 664|pages= 638–643|editor-last1= Wu|editor-first1= Yun|editor-last2= Wu|editor-first2= Yijin|doi= 10.4028/www.scientific.net/AMR.664.638}} 57. ^{{cite journal |doi=10.1021/es052181g |title=Biosolids—A Fuel or a Waste? An Integrated Appraisal of Five Co-combustion Scenarios with Policy Analysis |year=2006 |last1=Cartmell |first1=Elise |last2=Gostelow |first2=Peter |last3=Riddell-Black |first3=Drusilla |last4=Simms |first4=Nigel |last5=Oakey |first5=John |last6=Morris |first6=Joe |last7=Jeffrey |first7=Paul |last8=Howsam |first8=Peter |last9=Pollard |first9=Simon J. |journal=Environmental Science & Technology |volume=40 |issue=3 |pages=649–58 |pmid=16509299 }} 58. ^{{cite book|author=|title= Phosphorus: Agriculture and the Environment|url= https://dl.sciencesocieties.org/publications/books/articles/agronomymonogra/phosphorusagric/frontmatter|year= 2005|publisher= ASA, SSSA, CSSA|editor-last1= Sims|editor-first1= J. Thomas|editor-last2= Sharpley|editor-first2= Andrew N.|isbn= 978-0-89118-269-6|access-date= 5 June 2017}} 59. ^{{cite web|title=Phosphorus recovery with Pearl technology|url=http://grontmij.com/pearl|last= Morgenschweis|first= Christa|website= Grontmij|access-date= 5 June 2017|archive-url= https://web.archive.org/web/20160318134353/http://grontmij.com/pearl|archive-date= 18 March 2016}} 60. ^{{cite web|url= http://edocket.access.gpo.gov/cfr_2003/julqtr/40cfr503.16.htm|title= Title 40 - Protection of Environment|website= GPO|access-date= 5 June 2017}} 61. ^{{cite web|url= http://www.epa.gov/nrmrl/pubs/625r92013/625R92013chap7.pdf|title= Processes to Further Reduce Pathogens (PFRPs)|website= EPA|access-date= 5 June 2017|archive-url= https://web.archive.org/web/20090306082938/https://www.epa.gov/nrmrl/pubs/625r92013/625R92013chap7.pdf|archive-date= 6 March 2009}} 62. ^{{cite web|url= https://www.epa.gov/sites/production/files/2015-12/documents/biosolids_final_report.pdf|title= Land Application of Biosolids|date= 28 March 2002|website= EPA|access-date= 5 June 2017}} 63. ^{{cite web|url= http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503rule_503g_ch6.pdf|title= Questions and Answers on the Part 503 Risk Assessments|website= EPA|access-date= 5 June 2017|archive-url= https://web.archive.org/web/20141103125821/http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503rule_503g_ch6.pdf|archive-date= 3 November 2014|date= 2014-04-23}} 64. ^{{cite journal|last1= Swanson|first1= R. Lawrence|last2= Bortman|first2= Marci L.|last3= O'Connor|first3= Thomas P.|last4= Stanford|first4= Harold M.|title= Science, policy and the management of sewage materials. The New York City experience|journal= Marine Pollution Bulletin|volume= 49|issue= 9–10|date= November 2004|pages= 679–687|doi= 10.1016/j.marpolbul.2004.06.025|pmid= 15530510}} 65. ^{{cite web|url= https://www.epa.gov/sites/production/files/2015-05/documents/a_plain_english_guide_to_the_epa_part_503_biosolids_rule.pdf|title= A Plain English Guide to the EPA Part 503 Biosolids Rule|date= September 1994|website= EPA|access-date= 5 June 2017}} 66. ^{{cite web|title=Former Synagro Executive guilty of bribing City officials|url=https://www.fbi.gov/detroit/press-releases/2009/de113009.htm}} 67. ^{{cite news|title=Synagro Bribe Caught on FBI Tape|url=http://www.mlive.com/news/grand-rapids/index.ssf/2013/03/report_west_michigan_man_bribe.html}} 68. ^{{cite web|title=Travis County - Sludge violates local ordinances|url=}} 69. ^{{Cite news|url=http://www.prwatch.org/news/2011/10/10923/los-angeles-and-kern-countys-epic-sewage-sludge-battle|title=Los Angeles and Kern County's Epic Sewage Sludge Battle|date=2011-10-05|work=PR Watch|access-date=2018-10-26|language=en}} 70. ^{{Cite news|url=http://muskogeephoenix.com/local/x699462921/Landowners-win-sludge-suit|title=Landowners win sludge suit|last=Writer|first=D.E. SmootPhoenix Staff|work=Muskogee Phoenix|access-date=2018-10-26|language=en}} 71. ^{{cite web|title=Gilbert_v_synagro lawsuit|url=http://www.virginiabiosolids.com/wp-content/uploads/2013/01/Gilbert_Summary_Judgment_r.pdf}} 72. ^{{Cite news|url=http://archive.boston.com/news/nation/articles/2008/04/14/sludge_tested_as_lead_protection_in_poor_areas/|title=Sludge tested as lead protection in poor areas|last=Heilprin|first=John|date=2008-04-14|work=Boston.com|access-date=2018-10-26}} Further reading
External links
2 : Sewerage|Sanitation |
||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。