请输入您要查询的百科知识:

 

词条 List of microorganisms tested in outer space
释义

  1. Table

  2. See also

  3. References

The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli, Staphylococcus, and Enterobacter aerogenes into orbit.[1] A large number of microorganisms have been selected for exposure experiments since, as listed in the table below.

Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency.[1]

It is possible to classify these microorganisms into two groups, the human-borne, and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space.[2] NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies.[3] They are also nearly everywhere in the environment, and although normally invisible, can form slimy biofilms.[3]

Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost.[4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many of the experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia),[2] or their survival on Mars for understanding the likelihood of past or present life on that planet.[2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures.[5]

Research and testing of microorganisms in outer space could eventually be applied for directed panspermia or terraforming.

Table

{{legend|#ffffcc|text= {{Checked}}|indicates testing conditions}}
OrganismLow Earth orbitImpact event and planetary ejectionAtmospheric reentrySimulated conditions References
Bacteria & bacterial spores
Actinomyces erythreus
{{Checked}}
[6]
Aeromonas proteolytica
{{Checked}}
[11]
Anabaena cylindrica (akinetes)
{{Checked}}
{{Checked}}
[7]
Azotobacter chroococcum
{{Checked}}
[8]
Azotobacter vinelandii
{{Checked}}
[14]
Bacillus cereus
{{Checked}}
[9]
Bacillus megaterium
{{Checked}}
[10]
Bacillus mycoides
{{Checked}}
[11]
Bacillus pumilus
{{Checked}}
[11][12]
Bacillus subtilis
{{Checked}}
{{Checked}}
{{Checked}}
{{Checked}}
[13][14][15][16][17]
Bacillus thuringiensis
{{Checked}}
[18]
Carnobacterium
{{Checked}}
[19]
Chroococcidiopsis
{{Checked}}
{{Checked}}
{{Checked}}
{{Checked}}
[20][21][22][30]
Clostridium botulinum
{{Checked}}
[10]
Clostridium butyricum
{{Checked}}
[23][24]
Clostridium celatum
{{Checked}}
[24]
Clostridium mangenotii
{{Checked}}
[24]
Clostridium roseum
{{Checked}}
[24]
Deinococcus aerius
{{Checked}}
[25]
Deinococcus aetherius
{{Checked}}
[26]
Deinococcus geothermalis
{{Checked}}
{{Checked}}
[27]
Deinococcus radiodurans
{{Checked}}
{{Checked}}
{{Checked}}
[28][29][30]
Enterobacter aerogenes
{{Checked}}
[31]
Escherichia coli
{{Checked}}
{{Checked}}
{{Checked}}
[10][24][32][33]
Gloeocapsa
{{Checked}}
[34]
Gloeocapsopsis pleurocapsoides
{{Checked}}
[49]
Haloarcula-G
{{Checked}}
[50]
Hydrogenomonas eutropha
{{Checked}}
[32]
Klebsiella pneumoniae
{{Checked}}
[10]
Kocuria rosea
{{Checked}}
[35]
Lactobacillus plantarum
{{Checked}}
[36]
Leptolyngbya
{{Checked}}
[49]
Luteococcus japonicus
{{Checked}}
[37]
Micrococcus luteus
{{Checked}}
[37]
Nostoc commune
{{Checked}}
{{Checked}}
[34][38]
Nostoc microscopicum
{{Checked}}
[49]
Photobacterium
{{Checked}}
[37]
Pseudomonas aeruginosa
{{Checked}}
{{Checked}}
[3][36]
Pseudomonas fluorescens
{{Checked}}
[36]
Rhodococcus erythropolis
{{Checked}}
[39]
Rhodospirillum rubrum
{{Checked}}
[40]
Salmonella enterica
{{Checked}}
[41]
Serratia marcescens
{{Checked}}
[9]
Serratia plymuthica
{{Checked}}
[42]
Staphylococcus aureus
{{Checked}}
[23][36]
Streptococcus mutans
{{Checked}}
[43]
Streptomyces albus
{{Checked}}
[36]
Streptomyces coelicolor
{{Checked}}
[43]
Synechococcus (halite)
{{Checked}}
[44][45][46]
Synechocystis
{{Checked}}
{{Checked}}
[47]
Symploca
{{Checked}}
[49]
Tolypothrix byssoidea
{{Checked}}
[48]
Archaea
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Halobacterium noricense
{{Checked}}
[49][50]
Halobacterium salinarum
{{Checked}}
[43]
Halococcus dombrowskii
{{Checked}}
[49]
Halorubrum chaoviatoris
{{Checked}}
[46][86]
Methanosarcina sp. SA-21/16
{{Checked}}
[51]
Methanobacterium MC-20
{{Checked}}
[51]
Methanosarcina barkeri
{{Checked}}
[51]
Fungi and algae
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspergillus niger
{{Checked}}
[37]
Aspergillus oryzae
{{Checked}}
{{Checked}}
[28][37]
Aspergillus terreus
{{Checked}}
[52]
Aspergillus versicolor
{{Checked}}
[53]
Chaetomium globosum
{{Checked}}
{{Checked}}
[18]
Cladosporium herbarum
{{Checked}}
[54]
Cryomyces antarcticus
{{Checked}}
{{Checked}}
[55][56]
Cryomyces minteri
{{Checked}}
{{Checked}}
[55]
Euglena gracilis
{{Checked}}
{{Checked}}
[57][58][59][60]
Mucor plumbeus
{{Checked}}
[37]
Nannochloropsis oculata
{{Checked}}
[61][62][63]
Penicillium roqueforti
{{Checked}}
[13]
Rhodotorula mucilaginosa
{{Checked}}
[37]
Sordaria fimicola
{{Checked}}
[64]
Trebouxia
{{Checked}}
[65]
Trichoderma koningii
{{Checked}}
[66]
Trichoderma longibrachiatum
{{Checked}}
[67]
Trichophyton terrestre
{{Checked}}
[18]
Ulocladium atrum
{{Checked}}
[16]
Lichens
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspicilia fruticulosa
{{Checked}}
{{Checked}}
[68]
Buellia frigida
{{Checked}}
[69]
Circinaria gyrosa
{{Checked}}
{{Checked}}
[65][70]
Rhizocarpon geographicum
{{Checked}}
{{Checked}}
[65][71]
Rosenvingiella
{{Checked}}
[34]
Xanthoria elegans
{{Checked}}
{{Checked}}
{{Checked}}
[72][73][74][75][76]
Xanthoria parietina
{{Checked}}
{{Checked}}
[73]
Bacteriophage / virus
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
T7 phage
{{Checked}}
[18]
Canine hepatitis
{{Checked}}
[131]
Influenza PR8
{{Checked}}
[131]
Tobacco mosaic virus
{{Checked}}
[43][77]
Vaccinia virus
{{Checked}}
[77]
Yeast
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Rhodotorula rubra
{{Checked}}
{{Checked}}
[18]
Saccharomyces cerevisiae
{{Checked}}
{{Checked}}
[18]
Saccharomyces ellipsoides
{{Checked}}
[32]
Zygosaccharomyces bailii
{{Checked}}
[32]
Animals
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Caenorhabditis elegans
(nematode)
{{Checked}}
[78][79]
Hypsibius dujardini
(tardigrade)
{{Checked}}
{{Checked}}
[80][81]
Milnesium tardigradum
(tardigrade)
{{Checked}}
[82][83][84]
Richtersius coronifer
(tardigrade)
{{Checked}}
{{Checked}}
[82][85]
Mniobia russeola
(metazoan)
{{Checked}}
[85]

See also

{{Portal|Spaceflight}}{{col-float}}
Misc
  • Animals in space
  • Astrobiology
  • Earliest known life forms
  • Health threat from cosmic rays
  • Microscopic life
  • Panspermia
  • Plants in space
  • Space research
{{col-float-break}}
Low Earth orbit missions
  • Bion
  • BIOPAN
  • Biosatellite program
  • EXPOSE
  • O/OREOS
  • Tanpopo
{{col-float-end}}

References

1. ^{{Cite news |url=https://www.indy100.com/article/bacteria-get-dangerously-weird-in-space-7380481| title=Bacteria get dangerously weird in space| last=Love| first=Shayla|date=2016-10-26| newspaper=The Independent| access-date=2016-10-27}}
2. ^{{cite journal |last1=Olsson-Francis |first1=K. |last2=Cockell |first2=C. S. |date=2010 |title=Experimental methods for studying microbial survival in extraterrestrial environments |journal=Journal of Microbiological Methods |volume=80 |issue=1 |pages=1–13 |url=http://www1.univap.br/~spilling/AB/Olsson-francis_cockel_2010_astrobiology_Exp.pdf |doi=10.1016/j.mimet.2009.10.004 |pmid=19854226}}
3. ^NASA – Spaceflight Alters Bacterial Social Networks (2013)
4. ^{{cite journal |last1=Rothschild |first1=L. J. |last2=Mancinelli |first2=R. L. |date=2001 |title=Life in extreme environments |journal=Nature |volume=409 |issue=6823 |pages=1092–101 |doi=10.1038/35059215 |pmid=11234023|bibcode=2001Natur.409.1092R }}
5. ^{{cite journal |last1=Nicholson |first1=W. L. |last2=Moeller |first2=R. |last3=Horneck |first3=G. |last4= |first4= |date=2012 |title=Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT |journal=Astrobiology |volume=12 |issue=5 |pages=469–86 |bibcode=2012AsBio..12..469N |doi=10.1089/ast.2011.0748 |pmid=22680693}}
6. ^{{cite journal |last1=Dublin |first1=M. |last2=Volz |first2=P. A. |date=1973 |title=Space-related research in mycology concurrent with the first decade of manned space exploration |journal=Space Life Sciences |volume=4 |issue=2 |pages=223–30 |bibcode=1973SLSci...4..223D |doi=10.1007/BF00924469 |pmid=4598191}}
7. ^{{cite journal |last1=Olsson-Francis |first1=K. |last2=de la Torre |first2=R. |last3=Towner |first3=M. C. |last4=Cockell |first4=C. S. |date=2009 |title=Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions |journal=Origins of Life and Evolution of Biospheres |volume=39 |issue=6 |pages=565–579 |bibcode=2009OLEB...39..565O |doi=10.1007/s11084-009-9167-4|pmid=19387863 }}
8. ^{{cite journal |last1=Moll |first1=D. M. |last2=Vestal |first2=J. R. |date=1992 |title=Survival of microorganisms in smectite clays: Implications for Martian exobiology |journal=Icarus |volume=98 |issue=2 |pages=233–9 |bibcode=1992Icar...98..233M |doi=10.1016/0019-1035(92)90092-L |pmid=11539360}}
9. ^{{cite journal |last1=Hagen |first1=C. A. |last2=Hawrylewicz |first2=E. J. |last3=Ehrlich |first3=R. |date=1967 |title=Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores |journal=Applied Microbiology |volume=15 |issue=2 |pages=285–291 |pmc=546892 |pmid=4961769}}
10. ^{{cite journal |last1=Hawrylewicz |first1=E. |last2=Gowdy |first2=B. |last3=Ehrlich |first3=R. |date=1962 |title=Micro-organisms under a Simulated Martian Environment |journal=Nature |volume=193 |issue=4814 |pages=497 |bibcode=1962Natur.193..497H |doi=10.1038/193497a0}}
11. ^{{cite journal |last1=Imshenetskiĭ |first1=A. A. |last2=Murzakov |first2=B. G. |last3=Evdokimova |first3=M. D. |last4=Dorofeeva |first4=I. K. |date=1984 |title=Survival of bacteria in the Artificial Mars unit |journal=Mikrobiologiia |volume=53 |issue=5 |pages=731–7 |pmid=6439981}}
12. ^{{cite journal |last1=Horneck |first1=G. |date=2012 |title=Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission |journal=Astrobiology |volume=12 |issue=5|pages=445–56 |bibcode=2012AsBio..12..445H |doi=10.1089/ast.2011.0737 |pmc=3371261 |pmid=22680691}}
13. ^{{cite journal |last1=Hotchin |first1=J. |last2=Lorenz |first2=P. |last3=Hemenway |first3=C. |date=1965 |title=Survival of Micro-Organisms in Space |journal=Nature |volume=206 |issue=4983 |pages=442–445 |bibcode=1965Natur.206..442H |doi=10.1038/206442a0}}
14. ^{{cite journal |last1=Horneck |first1=G. |last2=Bücker |first2=H. |last3=Reitz |first3=G. |date=1994 |title=Long-term survival of bacterial spores in space |journal=Advances in Space Research |volume=14 |issue=10 |pages=41–5 |bibcode=1994AdSpR..14...41H |doi=10.1016/0273-1177(94)90448-0 |pmid=11539977}}
15. ^{{cite journal |last1=Fajardo-Cavazos |first1=P. |last2=Link |first2=L. |last3=Melosh |first3=H. J. |last4=Nicholson |first4=W. L. |date=2005 |title=Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia |journal=Astrobiology |volume=5 |issue=6 |pages=726–36 |bibcode=2005AsBio...5..726F |doi=10.1089/ast.2005.5.726 |pmid=16379527}}
16. ^{{cite journal |last1=Brandstätter |first1=F. |date=2008 |title=Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment |journal=Planetary and Space Science |volume=56 |issue=7 |pages=976–984 |bibcode=2008P&SS...56..976B |doi=10.1016/j.pss.2007.12.014|citeseerx=10.1.1.549.4307 }}
17. ^{{cite journal |last1=Wassmann |first1=M. |date=2012 |title=Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E |journal=Astrobiology |volume=12 |issue=5 |pages=498–507 |bibcode=2012AsBio..12..498W |doi=10.1089/ast.2011.0772 |pmid=22680695}}
18. ^{{cite journal |last1=Taylor |first1=G. R. |last2=Bailey |first2=J. V. |last3=Benton |first3=E. V. |date=1975 |title=Physical dosimetric evaluations in the Apollo 16 microbial response experiment |journal=Life Sciences and Space Research |volume=13 |issue= |pages=135–41 |pmid=11913418}}
19. ^{{cite journal |title=Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars |journal=PNAS USA |date=24 December 2012 |last=Nicholson |first=Wayne L. |last2=Krivushin |first2=Kirill |last3=Gilichinsky |first3=David |last4=Schuerger |first4=Andrew C. |volume=110 |issue=2 |pages=666–671 |doi=10.1073/pnas.1209793110 |pmid=23267097 |url=http://www.pnas.org/content/110/2/666.short |accessdate=2015-09-27 |bibcode=2013PNAS..110..666N |pmc=3545801 }}
20. ^{{cite journal |last1=Cockell |first1=C. S. |last2=Schuerger |first2=A. C. |last3=Billi |first3=D. |last4=Imre Friedmann |first4=E. |last5=Panitz |first5=C. |date=2005 |title=Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029 |journal=Astrobiology |volume=5 |issue=2 |pages=127–140 |bibcode=2005AsBio...5..127C |doi=10.1089/ast.2005.5.127 |pmid=15815164}}
21. ^{{cite journal |last1=Billi|first1=D. |date=2011 |title=Damage Escape and Repair in DriedChroococcidiopsisspp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions |journal=Astrobiology |volume=11 |issue=1 |pages=65–73 |bibcode=2011AsBio..11...65B |doi=10.1089/ast.2009.0430 |pmid=21294638}}
22. ^{{cite journal | title = The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes | journal = Acta Astronautica| date = 20 August 2013| last1 = Baqué |first1 = Mickael| last2 = de Vera |first2 = Jean-Pierre | last3 = Rettberg |first3 = Petra| last4 = Billi |first4 = Daniela| volume = 91 | issue = | pages = 180–186 | doi = 10.1016/j.actaastro.2013.05.015 | bibcode = 2013AcAau..91..180B}}
23. ^{{cite journal |last1=Parfenov |first1=G. P. |last2=Lukin |first2=A. A. |date=1973 |title=Results and prospects of microbiological studies in outer space |journal=Space Life Sciences |volume=4 |issue= 1|pages=160–179 |bibcode=1973SLSci...4..160P |doi=10.1007/BF02626350}}
24. ^{{cite journal |last1=Koike |first1=J. |date=1996 |title=Fundamental studies concerning planetary quarantine in space |journal=Advances in Space Research |volume=18 |issue=1–2 |pages=339–44 |bibcode=1996AdSpR..18..339K |doi=10.1016/0273-1177(95)00825-Y |pmid=11538982}}
25. ^Survival and DNA damage of cell-aggregate of Deinococcus spp. exposed to space for two-years in Tanpopo mission. Kawaguchi, Yuko; Hashimoto, Hirofumi; Yokobori, Shin-ichi; Yamagishi, Akihiko; Shibuya, Mio; Kinoshita, Iori; Hayashi, Risako; Yatabe, Jun; Narumi, Issay; Fujiwara, Daisuke; Murano, Yuka. 42nd COSPAR Scientific Assembly. Held 14-22 July 2018, in Pasadena, California, USA, Abstract id. F3.1-5-18. July 2018.
26. ^[https://www.liebertpub.com/doi/abs/10.1089/ast.2017.1751 Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission]. Akihiko Yamagishi, Yuko Kawaguchi, Hirofumi Hashimoto, Hajime Yano, Eiichi Imai, Satoshi Kodaira, Yukio Uchihori, and Kazumichi Nakagawa. Astrobiology Journal. 5 October 2018. {{doi|10.1089/ast.2017.1751}}.
27. ^BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests. EPSC Abstracts. Vol. 8, EPSC2013-930, 2013. European Planetary Science Congress 2013.
28. ^{{cite journal |last1=Dose |first1=K. |date=1995 |title=ERA-experiment "space biochemistry" |journal=Advances in Space Research |volume=16 |issue=8 |pages=119–29 |bibcode=1995AdSpR..16..119D |doi=10.1016/0273-1177(95)00280-R |pmid=11542696}}
29. ^{{cite journal |last1=Mastrapa |first1=R. M. E |last2=Glanzberg |first2=H. |last3=Head |first3=J. N |last4=Melosh |first4=H. J |last5=Nicholson |first5=W. L |date=2001 |title=Survival of bacteria exposed to extreme acceleration: Implications for panspermia |journal=Earth and Planetary Science Letters |volume=189 |issue= 1–2|pages=1–8 |bibcode=2001E&PSL.189....1M |doi=10.1016/S0012-821X(01)00342-9}}
30. ^{{cite journal |last1=De La Vega |first1=U. P. |last2=Rettberg |first2=P. |last3=Reitz |first3=G. |date=2007 |title=Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans |journal=Advances in Space Research |volume=40 |issue=11 |pages=1672–1677 |bibcode=2007AdSpR..40.1672D |doi=10.1016/j.asr.2007.05.022}}
31. ^{{cite journal |last1=Young |first1=R. S. |last2=Deal |first2=P. H. |last3=Bell |first3=J. |last4=Allen |first4=J. L. |date=1964 |title=Bacteria under simulated Martian conditions |journal=Life Sciences and Space Research |volume=2 |issue= |pages=105–11 |pmid=11881642}}
32. ^{{cite journal |last1=Grigoryev |first1=Y. G. |date=1972 |title=Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea |journal=Life Sciences and Space Research |volume=10 |issue= |pages=113–8 |pmid=11898831}}
33. ^{{cite journal |last1=Willis |first1=M. |last2=Ahrens |first2=T. |last3=Bertani |first3=L. |last4=Nash |first4=C. |date=2006 |title=Bugbuster—survivability of living bacteria upon shock compression |journal=Earth and Planetary Science Letters |volume=247 |issue=3–4 |pages=185–196 |bibcode=2006E&PSL.247..185W |doi=10.1016/j.epsl.2006.03.054}}
34. ^{{cite journal |title=Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth |journal=The ISME Journal |date= 19 May 2011 |last=Cockell |first=Charles S. |last2=Rettberg |first2=Petra |last3=Rabbow |first3=Elke |last4=Olson-Francis |first4=Karen |volume=5 |issue=10 |pages=1671–1682 |doi=10.1038/ismej.2011.46 |doi-access=free |url=http://www.nature.com/ismej/journal/v5/n10/full/ismej201146a.html |accessdate=2015-05-10 |pmid=21593797 |pmc=3176519}}
35. ^{{cite journal |last1=Imshenetskiĭ |first1=A. A. |last2=Kuzyurina |first2=L. A. |last3=Yakshina |first3=V.M. |date=1979 |title=Xerophytic microorganisms multiplying under conditions close to Martian ones |journal=Mikrobiologiia |volume=48 |issue=1 |pages=76–9 |pmid=106224}}
36. ^{{cite conference |last1=Hawrylewicz |first1=E. |last2=Hagen |first2=C. A. |last3=Tolkacz |first3=V. |last4=Anderson |first4=B. T. |last5=Ewing |first5=M. |date=1968 |chapter=Probability of growth pG of viable microorganisms in Martian environments |title=Life Sciences and Space Research VI |pages=146–156}}
37. ^{{cite journal |last1=Zhukova |first1=A. I. |last2=Kondratyev |first2=I. I. |date=1965 |title=On artificial Martian conditions reproduced for microbiological research |journal=Life Sciences and Space Research |volume=3 |issue= |pages=120–6 |pmid=12199257}}
38. ^{{cite journal |title=Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions |journal=International Journal of Astrobiology |date=3 August 2015 |last=Jänchena |first=Jochen |last2=Feyha |first2=Nina |last3=Szewzyka |first3=Ulrich |last4=de Vera |first4=Jean-Pierre P. |doi= 10.1017/S147355041500018X |doi-access=free|url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9890306&fulltextType=RA&fileId=S147355041500018X |accessdate=2015-08-17 |volume=15 |issue=2 |pages=107–118|bibcode=2016IJAsB..15..107J }}
39. ^{{cite journal |last1=Burchell |first1=M. |date=2001 |title=Survivability of Bacteria in Hypervelocity Impact |journal=Icarus |volume=154 |issue=2|pages=545–547 |bibcode=2001Icar..154..545B |doi=10.1006/icar.2001.6738}}
40. ^{{cite journal |last1=Roberts |first1=T. L. |last2=Wynne |first2=E. S. |date=1962 |title=Studies with a simulated Martian environment |journal=Journal of the Astronautical Sciences |volume=10 |issue= |pages=65–74}}
41. ^{{cite journal |title=A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions |journal=Astrobiology |date=1 September 2016 |last= Raktim |first=Roy |last2=Phani |first2=Shilpa P. |last3=Sangram |first3=Bagh |volume=16 |issue=9 |pages=677–689 |doi=10.1089/ast.2015.1420 |bibcode=2016AsBio..16..677R |pmid=27623197}}
42. ^{{cite journal |last1=Roten |first1=C. A. |last2=Gallusser |first2=A. |last3=Borruat |first3=G. D. |last4=Udry |first4=S. D. |last5=Karamata |first5=D. |date=1998 |title=Impact resistance of bacteria entrapped in small meteorites |journal=Bulletin de la Société Vaudoise des Sciences Naturelles |volume=86 |issue=1 |pages=1–17}}
43. ^{{cite journal |last1=Koike |first1=J. |last2=Oshima |first2=T. |last3=Kobayashi |first3=K. |last4=Kawasaki |first4=Y. |date=1995 |title=Studies in the search for life on Mars |journal=Advances in Space Research |volume=15 |issue=3 |pages=211–4 |bibcode=1995AdSpR..15..211K |doi=10.1016/S0273-1177(99)80086-6 |pmid=11539227}}
44. ^{{cite journal |last1=Mancinelli |first1=R. L. |last2=White |first2=M. R. |last3=Rothschild |first3=L. J. |date=1998 |title=Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment |journal=Advances in Space Research |volume=22 |issue=3 |pages=327–334 |bibcode=1998AdSpR..22..327M |doi=10.1016/S0273-1177(98)00189-6}}
45. ^{{cite web |date=26 April 2013 |title=Expose-R: Exposure of Osmophilic Microbes to Space Environment |publisher=NASA|url=http://www.nasa.gov/mission_pages/station/research/experiments/211.html |accessdate=2013-08-07}}
46. ^{{cite journal |title=The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R |journal=International Journal of Astrobiology |date=January 2015 |last=Mancinelli |first=R. L. |volume=14 |issue=Special Issue 1 |pages=123–128 |doi=10.1017/S147355041400055X |url=https://zenodo.org/record/943061 |accessdate=2015-05-09 |bibcode=2015IJAsB..14..123M }}
47. ^{{cite journal |last1=Klementiev |first1=K. E. |last2=Maksimov |first2=E. G. |last3=Gvozdev |first3=D. A. |last4=Tsoraev |first4=G. V. |display-authors=etal |date=2019 |title=Radioprotective role of cyanobacterial phycobilisomes |journal=Biochimica et Biophysica Acta (BBA) - Bioenergetics |volume=1860 |issue=2 |pages=121–128 |bibcode=2019BBAB.1860..121K |doi=10.1016/j.bbabio.2018.11.018|pmid=30465750 }}
48. ^{{cite journal |title=Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions |journal=International Journal of Astrobiology |date=17 October 2013 |last=de Vera |first=J. P. |last2=Dulai |first2=S. |last3=Kereszturi |first3=A. |last4=Koncz |first4=L. |last5=Pocs |first5=T. |pages=35–44 |doi=10.1017/S1473550413000323 |volume=13|issue=1 |bibcode=2014IJAsB..13...35D }}
49. ^{{cite journal |last1=Stan-Lotter |first1=H. |date=2002 |title=Astrobiology with haloarchaea from Permo-Triassic rock salt |journal=International Journal of Astrobiology |volume=1 |issue=4 |pages=271–284 |bibcode=2002IJAsB...1..271S |doi=10.1017/S1473550403001307}}
50. ^{{cite web |url=http://forms.asm.org/microbe/index.asp?bid=41227 |title=Extreme Halophiles Are Models for Astrobiology |dead-url=yes |archive-url=https://web.archive.org/web/20110722193334/http://forms.asm.org/microbe/index.asp?bid=41227 |archive-date=2011-07-22 |author=Shiladitya DasSarma |publisher=American Society for Microbiology}}
51. ^{{cite journal |last1=Morozova |first1=D. |last2=Möhlmann |first2=D. |last3=Wagner |first3=D. |date=2006 |title=Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions |journal=Origins of Life and Evolution of Biospheres |volume=37 |issue=2 |pages=189–200 |bibcode=2007OLEB...37..189M |doi=10.1007/s11084-006-9024-7|url=http://epic.awi.de/14473/1/Mor2006e.pdf }}
52. ^{{cite journal |title=Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation |journal=Planetary and Space Science |volume=59 |issue=1 |date=2011 |last=Sarantopoulou |first=E. |last2=Gomoiu |first2=I. |last3=Kollia |first3=Z. |last4=Cefalas |first4=A.C. |pages=63–78 |doi=10.1016/j.pss.2010.11.002 |bibcode=2011P&SS...59...63S|hdl=10442/15561 }}
53. ^{{cite journal |title=Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment |journal=International Journal of Astrobiology |date=January 2015 |last=Novikova |first=N. |last2=Deshevaya |first2=E. |last3=Levinskikh |first3=M. |last4=Polikarpov |first4=N. |last5=Poddubko |first5= S. |pages=137–142 |doi=10.1017/S1473550414000731 |url=http://journals.cambridge.org/download.php?file=%2FIJA%2FIJA14_01%2FS1473550414000731a.pdf&code=7ac87e355d4769b4ead73b8e039e5e6c |format=PDF |accessdate=2015-05-09 |volume=14|issue=1 |bibcode=2015IJAsB..14..137N }}
54. ^{{cite journal |title=Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum |journal=Journal of Applied Physics |date=2014 |last=Sarantopoulou |first=E. |last2=Stefi |first2=A. |last3=Kollia |first3=Z. |last4=Palles |first4=D. |last5=Petrou |first5=.P.S. |last6=Bourkoula |first6=A. |last7=Koukouvinos |first7=G. |last8=Velentzas |first8=A.D. |last9=Kakabakos |first9=S. |last10=Cefalas |first10=A.C. |pages=104701 |doi= 10.1063/1.4894621 |volume=116|issue=10 |bibcode=2014JAP...116j4701S }}
55. ^{{cite news |last=Wall |first=Mike |url=http://www.space.com/31772-fungi-survive-mars-conditions-space-station.html |title=Fungi Survive Mars-Like Conditions On Space Station |work=Space.com |date=January 29, 2016 |accessdate=2016-01-29 }}
56. ^[https://link.springer.com/article/10.1007/s11084-016-9485-2 BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests]. Claudia Pacelli, Laura Selbmann, Laura Zucconi, Jean-Pierre De Vera, Elke Rabbow, Gerda Horneck, Rosa de la Torre, Silvano Onofri. Origins of Life and Evolution of Biospheres. June 2017, Volume 47, Issue 2, pp 187–202
57. ^{{cite journal |title=Aquacells — Flagellates under long-term microgravity and potential usage for life support systems |vauthors=Häder DP, Richter PR, Strauch SM, et al |journal=Microgravity Sci. Technol |year=2006 |volume=18 |issue=210 |pages=210–214 |doi=10.1007/BF02870411}}
58. ^{{cite journal |title=The influence of microgravity on Euglena gracilis as studied on Shenzhou 8 |vauthors=Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V |year=2014 |journal=Plant Biol J |volume=16 |pages=113–119 |doi=10.1111/plb.12067|pmid=23926886 }}
59. ^[https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/restart-capability-of-restingstates-of-euglena-gracilis-after-9-months-of-dormancy-preparation-for-autonomous-space-flight-experiments/1564B49449577C9EE43AD9FA120002BA Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments]. Sebastian M. Strauch, Ina Becker, Laura Pölloth, Peter R. Richter., et al. International Journal of Astrobiology. Volume 17, Issue 2, April 2018 , pp. 101-111. {{doi|10.1017/S1473550417000131}}
60. ^[https://www.sciencedirect.com/science/article/pii/S017616170900306X The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights] Strauch, S. M., Richter, P., Schuster, M., & Häder, D. P. (2010). Journal of plant physiology, 167(1), 41-46. {{doi|10.1016/j.jplph.2009.07.009}}
61. ^{{cite conference |last=Pasini |first=J. L. S. |last2=Price |first2=M. C. |title=Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events |url=http://www.hou.usra.edu/meetings/lpsc2015/pdf/2725.pdf |format=PDF |conference=46th Lunar and Planetary Science Conference |date=2015 }}
62. ^Pasini D. L. S. et al. LPSC44, 1497. (2013).
63. ^Pasini D. L. S. et. al. EPSC2013, 396. (2013).
64. ^{{cite journal |last1=Zimmermann |first1=M. W. |last2=Gartenbach |first2=K. E. |last3=Kranz |first3=A. R. |date=1994 |title=First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores |journal=Advances in Space Research |volume=14 |issue=10 |pages=47–51 |bibcode=1994AdSpR..14...47Z |doi=10.1016/0273-1177(94)90449-9 |pmid=11539984}}
65. ^{{cite journal |title=UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances |journal=International Journal of Astrobiology |date=6 September 2013 |last=Sánchez |first=Francisco Javier |last2=Meeßen |first2=Joachim |last3=Ruiza |first3=M. del Carmen |last4=Sancho |first4=Leopoldo G. |last5=de la Torre |first5=Rosa |volume=13 |issue=1 |pages=1–18 |doi=10.1017/S147355041300027X |url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9130879&fulltextType=RA&fileId=S147355041300027X |accessdate=2015-05-10 |bibcode=2014IJAsB..13....1S }}
66. ^{{cite web |date=26 April 2013 |title=Expose-R: Exposure of Osmophilic Microbes to Space Environment |publisher=NASA|url=http://www.nasa.gov/mission_pages/station/research/experiments/211.html |accessdate=2013-08-07}}
67. ^{{cite journal |title=Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R |journal=International Journal of Astrobiology |date=January 2015 |last=Neuberger |first=Katja |last2=Lux-Endrich |first2=Astrid |last3=Panitz |first3=Corinna |last4=Horneck |first4=Gerda |volume=14 |issue=Special Issue 1 |pages=129–135 |doi=10.1017/S1473550414000408 |url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9520647&fulltextType=RA&fileId=S1473550414000408 |accessdate=2015-05-09 |bibcode=2015IJAsB..14..129N}}
68. ^{{cite journal |last1=Raggio |first1=J. |date=2011 |title=Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa |journal=Astrobiology |volume=11 |issue=4 |pages=281–92 |bibcode=2011AsBio..11..281R |doi=10.1089/ast.2010.0588 |pmid=21545267}}
69. ^{{cite journal |title=Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability |journal=Astrobiology |date=August 2015 |last=Meeßen |first=J. |last2=Wuthenow |first2=P. |last3=Schille |first3=P. |last4=Rabbow |first4=E. |last5=de Vera |first5=J.-P.P |volume=15 |issue=8 |pages=601–615 |doi=10.1089/ast.2015.1281 |bibcode=2015AsBio..15..601M |pmid=26218403 |pmc=4554929}}
70. ^The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa. de la Torre Rosa, Miller Ana Zélia, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, and Meeßen Joachim. Astrobiology. February 2017, 17(2): 145-153.
71. ^{{cite journal |last1=de La Torre Noetzel |first1=R. |date=2007 |title=BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem |journal=Advances in Space Research |volume=40 |issue=11 |pages=1665–1671 |bibcode=2007AdSpR..40.1665D |doi=10.1016/j.asr.2007.02.022}}
72. ^{{cite journal |last1=Sancho |first1=L. G. |date=2007 |title=Lichens survive in space: Results from the 2005 LICHENS experiment |journal=Astrobiology |volume=7 |issue=3 |pages=443–54 |bibcode=2007AsBio...7..443S |doi=10.1089/ast.2006.0046 |pmid=17630840}}
73. ^{{cite journal |last1=De Vera |first1=J.-P. |last2=Horneck |first2=G. |last3=Rettberg |first3=P. |last4=Ott |first4=S. |date=2004 |title=The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions |journal=Advances in Space Research |volume=33 |issue=8|pages=1236–43 |bibcode=2004AdSpR..33.1236D |doi=10.1016/j.asr.2003.10.035 |pmid=15806704}}
74. ^{{cite journal |last1=Horneck |first1=G. |date=2008 |title=Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested |journal=Astrobiology |volume=8 |issue=1 |pages=17–44 |bibcode=2008AsBio...8...17H |doi=10.1089/ast.2007.0134 |pmid=18237257}}
75. ^{{cite journal | year = 2014 | title = Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS | url = http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9308457&fulltextType=RA&fileId=S1473550414000214 | journal = International Journal of Astrobiology | volume = 14| issue = 3| pages = 411–425| doi = 10.1017/S1473550414000214 | last1 = Brandt | first1 = Annette | last2 = De Vera | first2 = Jean-Pierre | last3 = Onofri | first3 = Silvano | last4 = Ott | first4 = Sieglinde | bibcode = 2015IJAsB..14..411B }}
76. ^{{cite journal | vauthors = Horneck G, et al | year = 2008 | title = Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested| doi = 10.1089/ast.2007.0134 | journal = Astrobiology | volume = 8 | issue = 1| pages = 17–44 | pmid=18237257| bibcode = 2008AsBio...8...17H }}
77. ^{{cite journal |last1=Hotchin |first1=J. |date=1968 |title=The Microbiology of Space |journal=Journal of the British Interplanetary Society |volume=21 |issue= |pages=122 |bibcode=1968JBIS...21..122H}}
78. ^[https://www.researchgate.net/profile/Atsushi_Higashitani/publication/6898896_Decreased_expression_of_myogenic_transcription_factors_and_myosin_heavy_chains_in_Caenorhabditis_elegans_muscles_developed_during_spaceflight/links/0912f50e4e0ba1be39000000/Decreased-expression-of-myogenic-transcription-factors-and-myosin-heavy-chains-in-Caenorhabditis-elegans-muscles-developed-during-spaceflight.pdf Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight]. (PDF). Akira Higashibata, Nathaniel J. Szewczyk, Catharine A. Conley, Mari Imamizo-Sato,Atsushi Higashitani, and Noriaki Ishioka. The Journal of Experimental Biology 209, 3209-3218Published by The Company of Biologists 2006. {{doi|10.1242/jeb.02365}}
79. ^[https://www.nasa.gov/mission_pages/station/research/experiments/644.html International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics). November 22, 2016.
80. ^Pasini D. L. S. et al. LPSC45, 1789.(2014).
81. ^Pasini D. L. S. et. al. EPSC2014, 67. (2014).
82. ^{{cite journal |last1=Jönsson |first1=K. I. |last2=Rabbow |first2=E. |last3=Schill |first3=Ralph O. |last4=Harms-Ringdahl |first4=M. |last5=Rettberg |first5=P. |date=2008 |title=Tardigrades survive exposure to space in low Earth orbit |journal=Current Biology |volume=18 |issue=17 |pages=R729–R731 |url=http://www.sciencedirect.com/science/article/pii/S0960982208008051 |doi=10.1016/j.cub.2008.06.048 |pmid=18786368}}
83. ^{{cite web |date=17 May 2011 |title=BIOKon In Space (BIOKIS) |url=http://www.nasa.gov/mission_pages/station/research/experiments/BIOKIS.html |publisher=NASA |accessdate=2011-05-24}}
84. ^{{cite web |last=Brennard |first=E. |date=17 May 2011 |title=Tardigrades: Water bears in space |url=http://www.bbc.co.uk/nature/12855775 |publisher=BBC |accessdate=2011-05-24}}
85. ^Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola. K. Ingemar Jönsson, Andrzej Wojcik. Astrobiology. February 2017, Vol. 17, No. 2: 163-167.
{{Astrobiology}}{{Space medicine}}{{Use American English|date=January 2014}}{{DEFAULTSORT:Microorganisms tested in outer space}}

12 : Astrobiology|Astrobiology space missions|Biology-related lists|Lists of bacteria|Extremophiles|Life in space|Medical lists|Microbiology|Science-related lists|Space medicine|Space science experiments|Space-flown life

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 9:28:10