词条 | List of shapes with known packing constant | ||||||||||||||||||||||||||||||||||||||||
释义 |
The packing constant of a geometric body is the largest average density achieved by packing arrangements of congruent copies of the body. For most bodies the value of the packing constant is unknown.[1] The following is a list of bodies in Euclidean spaces whose packing constant is known.[1] Fejes Tóth proved that in the plane, a point symmetric body has a packing constant that is equal to its translative packing constant and its lattice packing constant.[2] Therefore, any such body for which the lattice packing constant was previously known, such as any ellipse, consequently has a known packing constant. In addition to these bodies, the packing constants of hyperspheres in 8 and 24 dimensions are almost exactly known.[3]
References1. ^1 {{cite arXiv |first=András | last=Bezdek | first2=Włodzimierz | last2=Kuperberg |eprint=1008.2398v1 |title=Dense packing of space with various convex solids |class=math.MG |year=2010}} 2. ^{{cite journal | last=Fejes Tóth | first=László | title=Some packing and covering theorems | journal=Acta Sci. Math. Szeged | volume=12 | year=1950}} 3. ^{{cite journal | title=Optimality and uniqueness of the Leech lattice among lattices | last=Cohn | first=Henry | last2=Kumar | first2=Abhinav | pages=1003–1050 | volume=170 | year=2009 | issue=3 | journal = Annals of Mathematics | doi=10.4007/annals.2009.170.1003| arxiv=math.MG/0403263 }} 4. ^{{cite arXiv |last1=Chang|first1=Hai-Chau |last2=Wang|first2=Lih-Chung |authorlink= |eprint=1009.4322v1 |title=A Simple Proof of Thue's Theorem on Circle Packing |class=math.MG |year=2010}} 5. ^{{cite journal | last=Reinhardt | first=Karl | title=Über die dichteste gitterförmige Lagerung kongruente Bereiche in der Ebene und eine besondere Art konvexer Kurven | journal=Abh. Math. Sem. Univ. Hamburg | volume=10 | pages=216–230 | year=1934 | doi=10.1007/bf02940676}} 6. ^{{cite journal | title=Packing and covering the plane with translates of a convex polygon | last=Mount | last2=Silverman | first=David M. | first2 = Ruth | doi=10.1016/0196-6774(90)90010-C | journal=Journal of Algorithms | volume=11 | issue=4 | year=1990 | pages=564–580}} 7. ^{{cite journal | first=András | last=Bezdek | first2=Włodzimierz | last2=Kuperberg | title=Maximum density space packing with congruent circular cylinders of infinite length | journal=Mathematika | volume=37 | year=1990 | pages=74–80 | doi=10.1112/s0025579300012808}} 8. ^{{citation|last1=Klarreich|first1=Erica|authorlink1=Erica Klarreich|title=Sphere Packing Solved in Higher Dimensions|url=https://www.quantamagazine.org/20160330-sphere-packing-solved-in-higher-dimensions|magazine=Quanta Magazine|date=March 30, 2016}} 9. ^{{cite arXiv| first1 = Maryna | last1 = Viazovska |authorlink1 = Maryna Viazovska| year = 2016 | title = The sphere packing problem in dimension 8 | eprint = 1603.04246 | class = math.NT }} 3 : Packing problems|Discrete geometry|Mathematics-related lists |
||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。