请输入您要查询的百科知识:

 

词条 List of shapes with known packing constant
释义

  1. References

The packing constant of a geometric body is the largest average density achieved by packing arrangements of congruent copies of the body. For most bodies the value of the packing constant is unknown.[1] The following is a list of bodies in Euclidean spaces whose packing constant is known.[1] Fejes Tóth proved that in the plane, a point symmetric body has a packing constant that is equal to its translative packing constant and its lattice packing constant.[2] Therefore, any such body for which the lattice packing constant was previously known, such as any ellipse, consequently has a known packing constant. In addition to these bodies, the packing constants of hyperspheres in 8 and 24 dimensions are almost exactly known.[3]

Image Description Dimension Packing constant Comments
All shapes that tile space all 1 By definition
Circle, Ellipse 2 π/{{sqrt|12}} ≈ 0.906900}} Proof attributed to Thue[4]
Smoothed octagon 2 Reinhardt[5]
All 2-fold symmetric convex polygons 2 Linear-time (in number of vertices) algorithm given by Mount and Ruth Silverman[6]
Sphere 3 π/{{sqrt|18}} ≈ 0.7404805}} See Kepler conjecture
Bi-infinite cylinder 3 π/{{sqrt|12}} ≈ 0.906900}} Bezdek and Kuperberg[7]
All shapes contained in a rhombic dodecahedron whose inscribed sphere is contained in the shape 3 Fraction of the volume of the rhombic dodecahedron filled by the shape Corollary of Kepler conjecture. Examples pictured: rhombicuboctahedron and rhombic enneacontahedron.
Hypersphere 8 See Hypersphere packing[8][9]
Hypersphere 24 See Hypersphere packing

References

1. ^{{cite arXiv |first=András | last=Bezdek | first2=Włodzimierz | last2=Kuperberg |eprint=1008.2398v1 |title=Dense packing of space with various convex solids |class=math.MG |year=2010}}
2. ^{{cite journal | last=Fejes Tóth | first=László | title=Some packing and covering theorems | journal=Acta Sci. Math. Szeged | volume=12 | year=1950}}
3. ^{{cite journal | title=Optimality and uniqueness of the Leech lattice among lattices | last=Cohn | first=Henry | last2=Kumar | first2=Abhinav | pages=1003–1050 | volume=170 | year=2009 | issue=3 | journal = Annals of Mathematics | doi=10.4007/annals.2009.170.1003| arxiv=math.MG/0403263 }}
4. ^{{cite arXiv |last1=Chang|first1=Hai-Chau |last2=Wang|first2=Lih-Chung |authorlink= |eprint=1009.4322v1 |title=A Simple Proof of Thue's Theorem on Circle Packing |class=math.MG |year=2010}}
5. ^{{cite journal | last=Reinhardt | first=Karl | title=Über die dichteste gitterförmige Lagerung kongruente Bereiche in der Ebene und eine besondere Art konvexer Kurven | journal=Abh. Math. Sem. Univ. Hamburg | volume=10 | pages=216–230 | year=1934 | doi=10.1007/bf02940676}}
6. ^{{cite journal | title=Packing and covering the plane with translates of a convex polygon | last=Mount | last2=Silverman | first=David M. | first2 = Ruth | doi=10.1016/0196-6774(90)90010-C | journal=Journal of Algorithms | volume=11 | issue=4 | year=1990 | pages=564–580}}
7. ^{{cite journal | first=András | last=Bezdek | first2=Włodzimierz | last2=Kuperberg | title=Maximum density space packing with congruent circular cylinders of infinite length | journal=Mathematika | volume=37 | year=1990 | pages=74–80 | doi=10.1112/s0025579300012808}}
8. ^{{citation|last1=Klarreich|first1=Erica|authorlink1=Erica Klarreich|title=Sphere Packing Solved in Higher Dimensions|url=https://www.quantamagazine.org/20160330-sphere-packing-solved-in-higher-dimensions|magazine=Quanta Magazine|date=March 30, 2016}}
9. ^{{cite arXiv| first1 = Maryna | last1 = Viazovska |authorlink1 = Maryna Viazovska| year = 2016 | title = The sphere packing problem in dimension 8 | eprint = 1603.04246 | class = math.NT }}

3 : Packing problems|Discrete geometry|Mathematics-related lists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 10:21:23