词条 | Little q-Jacobi polynomials |
释义 |
In mathematics, the little q-Jacobi polynomials pn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by {{harvtxt|Hahn|1949}}. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties. DefinitionThe little q-Jacobi polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by Orthogonality{{Empty section|date=September 2011}}Recurrence and difference relations{{Empty section|date=September 2011}}Rodrigues formula{{Empty section|date=September 2011}}Generating function{{Empty section|date=September 2011}}Relation to other polynomials{{Empty section|date=September 2011}}GalleryThe following are a set of animation plots for Little q-Jacobi polynomials, with varying q; three density plots of imaginary, real and modula in complex space; three set of complex 3D plots of imaginary, real and modulus of the said polynomials. References
3 : Orthogonal polynomials|Q-analogs|Special hypergeometric functions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。