请输入您要查询的百科知识:

 

词条 Little q-Jacobi polynomials
释义

  1. Definition

  2. Orthogonality

  3. Recurrence and difference relations

  4. Rodrigues formula

  5. Generating function

  6. Relation to other polynomials

  7. Gallery

  8. References

{{DISPLAYTITLE:Little q-Jacobi polynomials}}

In mathematics, the little q-Jacobi polynomials pn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by {{harvtxt|Hahn|1949}}. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.

Definition

The little q-Jacobi polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

Orthogonality

{{Empty section|date=September 2011}}

Recurrence and difference relations

{{Empty section|date=September 2011}}

Rodrigues formula

{{Empty section|date=September 2011}}

Generating function

{{Empty section|date=September 2011}}

Relation to other polynomials

{{Empty section|date=September 2011}}

Gallery

The following are a set of animation plots for Little q-Jacobi polynomials, with varying q;

three density plots of imaginary, real and modula in complex space; three set of complex 3D plots

of imaginary, real and modulus of the said polynomials.

References

  • {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | doi=10.2277/0521833574 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation | last1=Hahn | first1=Wolfgang | title=Über Orthogonalpolynome, die q-Differenzengleichungen genügen | doi=10.1002/mana.19490020103 | mr=0030647 | year=1949 | journal=Mathematische Nachrichten | issn=0025-584X | volume=2 | pages=4–34}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
  • {{dlmf|id=18|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}

3 : Orthogonal polynomials|Q-analogs|Special hypergeometric functions

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 1:19:04