词条 | Magnetorheological elastomer |
释义 |
FabricationMREs are typically prepared by curing process for polymers. The polymeric material (e.g. silicone rubber) in its liquid state is mixed with iron powder and several other additives to enhance their mechanical properties.[2] The entire mixture is then cured at high temperature. Curing in the presence of a magnetic field causes the iron particles to arrange in chain like structures resulting in an anisotropic material. If magnetic field is not applied, then iron-particles are randomly distributed in the solid resulting in an isotropic material. Recently, in 2017, an advanced technology, 3D printing has also been used to configure the magnetic particles inside the polymer matrix. [3] ClassificationMREs can be classified according to several parameters like: particles type, matrix, structure and distribution of particles:[4] Particles magnetic properties
Matrix structure
Matrix electrical properties
Distribution of particles
Theoretical StudiesIn order to understand magneto-mechanical behaviour of MREs, theoretical studies need to be performed which couple the theories of electromagnetism with mechanics. Such theories are called theories of magneto-mechanics.[5][6] ApplicationsMREs have been used for vibration isolation applications since their stiffness changes within a magnetic field [7][8] References1. ^Magnetorheology, Editor: Norman M Wereley, Royal Society of Chemistry, Cambridge 2014, https://pubs.rsc.org/en/content/ebook/978-1-84973-754-8 2. ^Jolly, M. R., Carlson, J. D. & Muñoz, B. C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996). 3. ^A.K. Bastola, V.T Hoang, L. Lin. A novel hybrid magnetorheological elastomer developed by 3D printing. Materials and Design 114, 391–397 (2017) [https://dx.doi.org/10.1016/j.matdes.2016.11.006 [link]]. 4. ^Anna Boczkowska and Stefan Awietjan (2012). Microstructure and Properties of Magnetorheological Elastomers, Advanced Elastomers - Technology, Properties and Applications, D.Sc. Anna Boczkowska (Ed.), {{ISBN|978-953-51-0739-2}}, InTech, DOI: 10.5772/50430 5. ^Kankanala, S. V. & Triantafyllidis, N. On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52, 2869–2908 (2004). 6. ^Dorfmann, A. & Ogden, R. W. Magnetoelastic modelling of elastomers. Eur. J. Mech. - A/Solids 22, 497–507 (2003). 7. ^Deng, H. X., Gong, X. L. & Wang, L. H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater. Struct. 15, N111-N116 (2006) [https://dx.doi.org/10.1088/0964-1726/15/5/N02 [link]]. 8. ^Behrooz, M., Wang, X. & Gordaninejad, F. Performance of a new magnetorheological elastomer isolation system. Smart Mater. Struct. 23, 045014 (2014) [https://dx.doi.org/10.1088/0964-1726/23/4/045014 [link]]. Further reading{{Refbegin}}{{cite web|title=Mathematical modelling of non-linear magneto- and electro-active rubber-like materials|url=http://theses.gla.ac.uk/2096/1/2007bustamantephd.pdf}}{{Refend}}{{Refbegin}}{{Refbegin}}{{cite web|title=The Elastic and Damping Properties of Magnetorheological Elastomers|url=http://www.vtt.fi/inf/pdf/publications/2005/P565.pdf}}{{Refend}}{{Refbegin}}{{cite web|title=Theory and Numerical Aspects of Constitutive Modeling in Finite Deformation Magnetomechanics|url=http://www.ethiraj.de/wp-content/uploads/2013/03/ethiraj-thesis.pdf}}{{Refend}}{{Refbegin}}{{cite web|title=Huge Magnetostriction of Magnetorheological Composite|url=http://tel.archives-ouvertes.fr/docs/00/48/89/10/PDF/Gildas_DIGUET_These.pdf}}{{Refend}}See also
3 : Elastomers|Materials science|Polymer physics |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。