词条 | Soybean | ||||||||||||||||||||||
释义 |
| name = Soybean | image = Soybean.USDA.jpg | regnum = Plantae | unranked_divisio = Angiosperms | unranked_classis = Eudicots | unranked_ordo = Rosids | ordo = Fabales | familia = Fabaceae | subfamilia = Faboideae | genus = Glycine | species = G. max | binomial = Glycine max | binomial_authority = (L.) Merr. | synonyms =
| synonyms_ref = [1] }}{{Infobox Chinese |c=大豆 |l="large bean" |p=dàdòu |mi={{IPAc-cmn|d|a|4|.|d|ou|4}} |s2=黄豆 |t2=黃豆 |l2="yellow bean" |p2=huángdòu |j2=wong4-dau6 |y2=wòhng-dauh |h2=vòng-theu |poj2=n̂g-tāu |kanji=大豆[2] |kana=ダイズ |romaji=daizu |hanja=大豆 |hangul=대두 |rr=daedu }} The soybean (Glycine max), or soya bean,[3] is a species of legume native to East Asia, widely grown for its edible bean, which has numerous uses. Fat-free (defatted) soybean meal is a significant and cheap source of protein for animal feeds and many packaged meals. For example, soybean products, such as textured vegetable protein (TVP), are ingredients in many meat and dairy substitutes.[4] The beans contain significant amounts of phytic acid, dietary minerals and B vitamins. Soy vegetable oil, used in food and industrial applications, is another product of processing the soybean crop. Traditional unfermented food uses of soybeans include soy milk, from which tofu and tofu skin are made. Fermented soy foods include soy sauce, fermented bean paste, natto, and tempeh. Etymology"Soy" originated as a corruption of the Chinese or Japanese names for soy sauce ({{zh|c=豉油|p=chǐyóu|cy=sihyàuh|j=si6jau4}}) {{Nihongo||醤油||lead=yes|shōyu}}.[5] The etymology of the genus, Glycine, comes from Linnaeus. When naming the genus, Linnaeus observed that one of the species within the species had a sweet root. Based on the sweetness, the Greek word for sweet, glykós, was Latinized.[5] The genus name is not related to the amino acid glycine. ClassificationThe genus Glycine Willd. is divided into two subgenera, Glycine and Soja. The subgenus Soja (Moench) F.J. Herm. includes the cultivated soybean, Glycine max (L.) Merr., and the wild soybean, Glycine soja Sieb. & Zucc. Both species are annuals. Glycine soja is the wild ancestor of Glycine max, and grows wild in China, Japan, Korea and Russia.[6] The subgenus Glycine consists of at least 25 wild perennial species: for example, Glycine canescens F.J. Herm. and G. tomentella Hayata, both found in Australia and Papua New Guinea.[7][8] Perennial soybean (Neonotonia wightii) originated in Africa and is now a widespread pasture crop in the tropics.[9][10][11] Like some other crops of long domestication, the relationship of the modern soybean to wild-growing species can no longer be traced with any degree of certainty.[12] It is a cultural variety with a very large number of cultivars.[13] DescriptionLike most plants, soybeans grow in distinct morphological stages as they develop from seeds into fully mature plants. GerminationThe first stage of growth is germination, a method which first becomes apparent as a seed's radicle emerges.[14] This is the first stage of root growth and occurs within the first 48 hours under ideal growing conditions. The first photosynthetic structures, the cotyledons, develop from the hypocotyl, the first plant structure to emerge from the soil. These cotyledons both act as leaves and as a source of nutrients for the immature plant, providing the seedling nutrition for its first 7 to 10 days.[14] MaturationThe first true leaves develop as a pair of single blades.[14] Subsequent to this first pair, mature nodes form compound leaves with three blades. Mature trifoliolate leaves, having three to four leaflets per leaf, are often between {{convert|6| –|15|cm|in|abbr=on}} long and {{convert|2| –|7|cm|in|abbr=on}} broad. Under ideal conditions, stem growth continues, producing new nodes every four days. Before flowering, roots can grow {{convert|1.9|cm|in|abbr=on}} per day. If rhizobia are present, root nodulation begins by the time the third node appears. Nodulation typically continues for 8 weeks before the symbiotic infection process stabilizes.[14] The final characteristics of a soybean plant are variable, with factors such as genetics, soil quality, and climate affecting its form; however, fully mature soybean plants are generally between {{convert|51|–|127|cm|in|abbr=on}} in height[15] and have rooting depths between {{convert|76|–|152|cm|in|abbr=on}}.[16] FloweringFlowering is triggered by day length, often beginning once days become shorter than 12.8 hours.[14] This trait is highly variable however, with different varieties reacting differently to changing day length.[17] Soybeans form inconspicuous, self-fertile flowers which are borne in the axil of the leaf and are white, pink or purple. Depending of the soybean variety, node growth may cease once flowering begins. Strains that continue nodal development after flowering are termed "indeterminates" and are best suited to climates with longer growing seasons.[14] Often soybeans drop their leaves before the seeds are fully mature. The fruit is a hairy pod that grows in clusters of three to five, each pod is {{convert|3|–|8|cm|in|abbr=on}} long and usually contains two to four (rarely more) seeds 5–11 mm in diameter. Soybean seeds come in a wide variety sizes and hull colors such as black, brown, yellow, and green.[15] Variegated and bicolored seed coats are also common. Seed resilienceThe hull of the mature bean is hard, water-resistant, and protects the cotyledon and hypocotyl (or "germ") from damage. If the seed coat is cracked, the seed will not germinate. The scar, visible on the seed coat, is called the hilum (colors include black, brown, buff, gray and yellow) and at one end of the hilum is the micropyle, or small opening in the seed coat which can allow the absorption of water for sprouting. Some seeds such as soybeans containing very high levels of protein can undergo desiccation, yet survive and revive after water absorption. A. Carl Leopold began studying this capability at the Boyce Thompson Institute for Plant Research at Cornell University in the mid-1980s. He found soybeans and corn to have a range of soluble carbohydrates protecting the seed's cell viability.[18] Patents were awarded to him in the early 1990s on techniques for protecting biological membranes and proteins in the dry state. Nitrogen-fixing abilityLike many legumes, soybeans can fix atmospheric nitrogen, thanks to symbiotic bacteria from the Rhizobia group.[19] Chemical compositionTogether, protein and soybean oil content account for 56% of dry soybeans by weight (36% protein and 20% fat, table). The remainder consists of 30% carbohydrates, 9% water and 5% ash (table). Soybeans comprise approximately 8% seed coat or hull, 90% cotyledons and 2% hypocotyl axis or germ.[20]{{citation needed|date=November 2015}} Nutrition{{further|Soy protein}}{{nutritionalvalue| name=Soybean, mature seeds, raw | water=8.54 g | cholesterol=0 mg | ash=4.07 g | kJ=1866 | protein=36.49 g | fat=19.94 g | satfat=2.884 g | monofat = 4.404 g | polyfat = 11.255 g | omega3fat=1.330 g | omega6fat=9.925 g | carbs=30.16 g | fiber=9.3 g | sugars=7.33 g | calcium_mg=277 | copper_mg = 1.658 | iron_mg=15.7 | magnesium_mg=280 | phosphorus_mg=704 | potassium_mg=1797 | sodium_mg=2 | manganese_mg=2.517 | zinc_mg=4.89 | vitC_mg=6.0 | thiamin_mg=0.874 | riboflavin_mg=0.87 | niacin_mg=1.623 | pantothenic_mg=0.793 | vitB6_mg=0.377 | folate_ug=375 | vitB12_ug = 0 | choline_mg=115.9 | vitA_ug=1 | vitE_mg=0.85 | vitK_ug=47 | tryptophan=0.591 g | threonine=1.766 g | isoleucine=1.971 g | leucine=3.309 g | lysine=2.706 g | methionine=0.547 g | cystine=0.655 g | phenylalanine=2.122 g | tyrosine=1.539 g | valine=2.029 g | arginine=3.153 g | histidine=1.097 g | alanine=1.915 g | aspartic acid=5.112 g | glutamic acid=7.874 g | glycine=1.880 g | proline=2.379 g | serine=2.357 g | right=1 | note=Link to Complete USDA Nutrient Database Entry }} 100 grams of raw soybeans supply 446 calories and are 9% water, 30% carbohydrates, 20% total fat and 36% protein (table). Soybeans are an exceptional source of essential nutrients, providing in a 100 gram serving (raw, for reference) high contents of the Daily Value (DV) especially for protein (36% DV), dietary fiber (37%), iron (121%), manganese (120%), phosphorus (101%) and several B vitamins, including folate (94%) (table). High contents also exist for vitamin K, magnesium, zinc and potassium (table). For human consumption, soybeans must be cooked with "wet" heat to destroy the trypsin inhibitors (serine protease inhibitors). Raw soybeans, including the immature green form, are toxic to all monogastric animals.[21] Protein{{further|Complete protein|Protein quality|Soy protein}}Most soy protein is a relatively heat-stable storage protein. This heat stability enables soy food products requiring high temperature cooking, such as tofu, soy milk and textured vegetable protein (soy flour) to be made. Soy is a good source of protein for vegetarians and vegans or for people who want to reduce the amount of meat they eat, according to the US Food and Drug Administration:[29] {{Quote|Soy protein products can be good substitutes for animal products because, unlike some other beans, soy offers a 'complete' protein profile. ... Soy protein products can replace animal-based foods—which also have complete proteins but tend to contain more fat, especially saturated fat—without requiring major adjustments elsewhere in the diet.}}The Protein Digestibility Corrected Amino Acid Score (PDCAAS) of soy protein is the nutritional equivalent of meat, eggs, and casein for human growth and health. Soybean protein isolate has a biological value of 74, whole soybeans 96, soybean milk 91, and eggs 97.[22] Soy protein is essentially identical to the protein of other legume seeds and pulses.[23][24] Moreover, soybeans can produce at least twice as much protein per acre than any other major vegetable or grain crop besides hemp, five to 10 times more protein per acre than land set aside for grazing animals to make milk, and up to 15 times more protein per acre than land set aside for meat production.[25]All spermatophytes, except for the grass-cereal family, contain soybean-like 7S (vicilin) or 11S (legumin), (S denotes Svedberg, sedimentation coefficients) seed storage globulin proteins. Oats and rice are anomalous in that they also contain a majority of soybean-like protein.[26] Cocoa, for example, contains the 7S globulin, which contributes to cocoa/chocolate taste and aroma;,[27][28][29] whereas coffee beans (coffee grounds) contain the 11S globulin responsible for coffee's aroma and flavor.[30][31] Vicilin and legumin proteins belong to the cupin superfamily, a large family of functionally diverse proteins that have a common origin and whose evolution can be followed from bacteria to eukaryotes including animals and higher plants.[32] 2S albumins form a major group of homologous storage proteins in many dicot species and in some monocots but not in grasses (cereals).[33] Soybeans contain a small but significant 2S storage protein.[34][35][36] 2S albumin are grouped in the prolamin superfamily.[37] Other allergenic proteins included in this 'superfamily' are the non-specific plant lipid transfer proteins, alpha amylase inhibitor, trypsin inhibitors, and prolamin storage proteins of cereals and grasses.[26] Peanuts, for instance, contain 20% 2S albumin but only 6% 7S globulin and 74% 11S.[33] It is the high 2S albumin and low 7S globulin that is responsible for the relatively low lysine content of peanut protein compared to soy protein. CarbohydratesThe principal soluble carbohydrates of mature soybeans are the disaccharide sucrose (range 2.5–8.2%), the trisaccharide raffinose (0.1–1.0%) composed of one sucrose molecule connected to one molecule of galactose, and the tetrasaccharide stachyose (1.4 to 4.1%) composed of one sucrose connected to two molecules of galactose.[38] While the oligosaccharides raffinose and stachyose protect the viability of the soybean seed from desiccation (see above section on physical characteristics) they are not digestible sugars, so contribute to flatulence and abdominal discomfort in humans and other monogastric animals, comparable to the disaccharide trehalose. Undigested oligosaccharides are broken down in the intestine by native microbes, producing gases such as carbon dioxide, hydrogen, and methane. Since soluble soy carbohydrates are found in the whey and are broken down during fermentation, soy concentrate, soy protein isolates, tofu, soy sauce, and sprouted soybeans are without flatus activity. On the other hand, there may be some beneficial effects to ingesting oligosaccharides such as raffinose and stachyose, namely, encouraging indigenous bifidobacteria in the colon against putrefactive bacteria. The insoluble carbohydrates in soybeans consist of the complex polysaccharides cellulose, hemicellulose, and pectin. The majority of soybean carbohydrates can be classed as belonging to dietary fiber. FatsRaw soybeans are 20% fat, including saturated fat (3%), monounsaturated fat (4%) and polyunsaturated fat, mainly as linoleic acid (table). Within soybean oil or the lipid portion of the seed is contained four phytosterols: stigmasterol, sitosterol, campesterol, and brassicasterol accounting for about 2.5% of the lipid fraction; and which can be converted into steroid hormones.[39] Additionally soybeans are a rich source of sphingolipids.[40] Comparison to other major staple foodsThe following table shows the nutrient content of green soybean and other major staple foods, each in respective raw form. Raw soybeans, however, aren't edible and cannot be digested. These must be sprouted, or prepared and cooked for human consumption. In sprouted and cooked form, the relative nutritional and anti-nutritional contents of each of these grains is remarkably different from that of raw form of these grains reported in this table. The nutritional value of soybean and each cooked staple depends on the processing and the method of cooking: boiling, frying, roasting, baking, etc. {{Comparison of major staple foods}}Cultivation{{Further|List of soybean diseases}}UsesSoybeans are a globally important crop, providing oil and protein. In the United States, the bulk of the harvest is solvent-extracted with hexane, and the "toasted" defatted soymeal (50% protein) then makes possible the raising of farm animals (e.g. chicken, hog, turkey) on a large industrial scale. Soybean products are used in a large variety of processed foods. During World War II, soybeans became important in both North America and Europe chiefly as substitutes for other protein foods and as a source of edible oil. During the war, the soybean was discovered as fertilizer by the United States Department of Agriculture. ConditionsCultivation is successful in climates with hot summers, with optimum growing conditions in mean temperatures of {{convert|20|to|30|C|F}}; temperatures of below 20 °C and over 40 °C (68 °F, 104 °F) stunt growth significantly. They can grow in a wide range of soils, with optimum growth in moist alluvial soils with a good organic content. Soybeans, like most legumes, perform nitrogen fixation by establishing a symbiotic relationship with the bacterium Bradyrhizobium japonicum (syn. Rhizobium japonicum; Jordan 1982). For best results, though, an inoculum of the correct strain of bacteria should be mixed with the soybean (or any legume) seed before planting. Modern crop cultivars generally reach a height of around {{convert|1|m|ft|abbr=on}}, and take 80–120 days from sowing to harvesting. Environmental issuesEnvironmental groups such as Greenpeace and the WWF have reported soybean cultivation—especially soybean cultivation in Brazil—has already destroyed huge areas of Amazon rainforest, and is encouraging further deforestation.[41][42][43] The driving cause of this deforestation is the global demand for meat, which in turn requires huge tracts of land to grow feed crops for livestock. According to the World Bank, animal agriculture is responsible for up to 91% of the destruction of the Amazon rainforest.[44][45][46] SoilsSoil scientists Edson Lobato (Brazil), Andrew McClung (U.S.), and Alysson Paolinelli (Brazil) were awarded the 2006 World Food Prize for transforming the ecologically biodiverse savannah of the Cerrado region of Brazil into highly productive cropland that could grow profitable soybeans.[47][48][49] However, even correcting for poor soils soybeans were an unlikely cash crop for the Cerrado. Soy did not fare well in the low latitudes. More than the heat and humidity, it was a lack of seasons that hampered production. In the higher more northerly latitudes, flowering coincides with the summer solstice, when the plants reach their maximum height. The first soybeans planted in the Cerrado, however, flowered early and, deprived of long summer days, remained stunted. For soy agriculture to take root in Mato Grosso it was first necessary to develop a "tropical soybean"—one that would flower later, giving the plants more time to fully mature. This was accomplished after years of crossbreeding by scientists within Embrapa, the research arm of the Brazilian Ministry of Agriculture.[50][51] Contamination concernsHuman sewage sludge can be used as fertilizer to grow soybeans. Soybeans grown in sewage sludge likely contain elevated concentrations of metals.[52][53] PestsSoybean plants are vulnerable to a wide range of bacterial diseases, fungal diseases, viral diseases and parasites. One important pest is the corn earworm moth and bollworm, which is the most common and destructive pest of soybean growth in Virginia.[54] Production{{main|List of countries by soybean production}}
The main countries growing soybeans in 2016 were the United States (35% of world total), Brazil (29%) and Argentina (18%).[55] The global production of soybeans is forecast to be 337 million tonnes in 2017–2018,[57] The United States, Brazil and Argentina are the world's largest soybean producers and represent more than 80% of global soybean production (table).[58][59] In 2016, the average worldwide yield for soybean crops was 2.8 tonnes per hectare.[59] The three largest yields per hectare were in Turkey, Georgia and Italy, having an average nationwide soybean yield of 4.0 tonnes. The most productive soybean farms in the world in 2016 were in Turkey, with a nationwide average farm yield of 4.3 tonnes per hectare.[59] In the 1960–01 Dillon round of the General Agreement on Tariffs and Trade (GATT), the United States secured tariff-free access for its soybeans to the European market. In the 1960s, the United States exported over 90% of the world's soybeans.[60][61] By 2005, the top soybean exporters were Argentina (39% of world soybean exports), United States (37%), and Brazil (16%), while the top importers were China (41% of world soybean imports), European Union (22%), Japan (6%) and Mexico (6%).[62] HistorySoybeans were a crucial crop in East Asia long before written records began.[63] There is evidence for soybean domestication between 7000 and 6600 BC in China, between 5000 and 3000 BC in Japan and 1000 BC in Korea.[64] Prior to fermented products such as fermented black soybeans (douchi), jiang (Chinese miso), soy sauce, tempeh, natto, and miso, soy was considered sacred for its beneficial effects in crop rotation, and it was eaten by itself, and as bean curd and soy milk. Soybeans were introduced to Java in Malay Archipelago circa 13th century or probably earlier. By the 17th century through their trade with Far East, soybeans and its products were traded by European traders (Portuguese, Spanish, and Dutch) in Asia, and supposedly reached Indian Subcontinent by this period. By the 18th century, soybeans were introduced to the Americas and Europe from China. Soy was introduced to Africa from China in the late 19th century, and is now widespread across the continent. They are now a major crop in the United States, Brazil, Argentina, India, and China. East AsiaThe closest living relative of the soybean is Glycine soja (previously called G. ussuriensis), a legume native to central China.[65] According to the ancient Chinese myth, in 2853 BC, the legendary Emperor Shennong of China proclaimed that five plants were sacred: soybeans, rice, wheat, barley, and millet.[66] Cultivation of soybeans took place over long periods of time in the prehistory of modern-day Japan, Korea and Northern China, based on archaeological evidence. The origin of soy bean cultivation remains scientifically debated. Early Chinese records mention that soybeans were a gift from the region of Yangtze River delta and Southeast China.[67] Recent research, however, indicates that seeding of wild forms started early (before 5000 BC) in multiple locations throughout East Asia[68] The Great Soviet Encyclopedia claims soybean cultivation originated in China about 5000 years ago.[69] Some scholars suggest that soybean originated in China and was domesticated about 3500 BC.[70] The earliest documented evidence for the use of Glycine of any kind comes from charred plant remains of wild soybean recovered from Jiahu in Henan province China, a Neolithic site occupied between 9000 and 7800 calendar years ago (cal bp)[71] Centered around this region, an abundance of archeological, charred soybean specimens. [72] However, the oldest preserved soybeans resembling modern varieties in size and shape were found in archaeological sites in Korea dated about 1000 BC.[67][73] Radiocarbon dating of soybean samples recovered through flotation during excavations at the Early Mumun period Okbang site in Korea indicated soybean was cultivated as a food crop in around 1000–900 BC.[73] Soybeans from the Jōmon period in Japan from 3000 BC[68] are also significantly larger than wild varieties.[68][74] The cultivation of soybeans began in the eastern half of northern China by 2000 BC, but is almost certainly much older.[75] Soybeans became an important crop by the Zhou Dynasty (c. 1046–256 BC) in China. However, the details of where, when, and under what circumstances soybean developed a close relationship with people are poorly understood. Soy bean was unknown in South China before the Han period.[68] From about the first century AD to the Age of Discovery (15–16th centuries), soybeans were introduced into across South and Southeast Asia. This spread was due to the establishment of sea and land trade routes. The earliest Japanese textual reference to the soybean is in the classic Kojiki (Records of Ancient Matters), which was completed in AD 712. Many people have claimed soybeans in Asia were historically only used after a fermentation process, which lowers the high phytoestrogens content found in the raw plant. However, terms similar to "soy milk" have been in use since AD 82,[76] and there is evidence of tofu consumption that dates to 220.[77] Southeast AsiaSoybeans were mentioned as kadêlê (modern Indonesian term: kedelai)[78] in an old Javanese manuscript, Serat Sri Tanjung, which dates around the 12th to 13th century Java.[79] By the 13th century, the soybean had arrived and cultivated in Indonesia; it probably arrived much earlier however, carried by traders or merchants from Southern China.[80] The earliest known reference to it as "tempeh" appeared in 1815 in the Serat Centhini manuscript.[81] The development of tempeh fermented soybean cake were probably took place earlier, circa 17th century in Java. South AsiaBy the 1600s, soy sauce spread from southern Japan across the region through the Dutch East India Company (VOC). The soybean probably arrived from southern China, moving southwest into northern parts of Indian Subcontinent by this period.[82] IberiaIn 1603, "Vocabvlario da Lingoa de Iapam", a famous Japanese-Portuguese dictionary, was compiled and published by Jesuit priests in Nagasaki. It contains short but clear definitions for about 20 words related to soyfoods – the first in any European language. The Luso-Hispanic traders were familiar with soybeans and soybean product through their trade with Far East since at least 17th century. However, it was not until the late 19th century that the first attempt to cultivate soybeans in the Iberian peninsula was undertaken. In 1880, the soybean was first cultivated in Portugal in the Botanical Gardens at Coimbra (Crespi 1935). In about 1910 in Spain the first attempts at Soybean cultivation were made by the Count of San Bernardo, who cultivated soybeans on his estates at Almillo (in southwest Spain) about 48 miles east-northeast of Seville.[83] North AmericaSoybeans were first introduced to North America from China in 1765, by Samuel Bowen, a former East India Company sailor who had visited China in conjunction with James Flint, the first Englishman legally permitted by the Chinese authorities to learn Chinese.[84] The first "New World" soybean crop was grown on Skidaway Island, Georgia in 1765 by Henry Yonge from seeds given him by Samuel Bowen.[85][86][87] Bowen grew soy near Savannah, Georgia, possibly using funds from Flint, and made soy sauce for sale to England.[88] Although, soybean was introduced into North America in 1765, for the next 155 years, the crop was grown primarily for forage.[89] In 1831, the first soy product "a few dozen India Soy" [sauce] arrived in Canada. Soybeans were probably first cultivated in Canada by 1855, and definitely in 1895 at Ontario Agricultural College.[90] It was not until Lafayette Mendel and Thomas Burr Osborne showed that the nutritional value of soybean seeds could be increased by cooking, moisture or heat, that soy went from a farm animal feed to a human food.[91][92] William Morse is considered the "father" of modern soybean agriculture in America. He and Charles Piper (Dr. C. V. Piper) took what was an unknown Oriental peasant crop in 1910 and transformed it into a "golden bean" for America becoming one of America's largest farm crops and its most nutritious.[93][94][95] Prior to the 1920 in the US, the soybean was mainly a forage crop, a source of oil, meal (for feed) and industrial products, with very little used as food. However, it took on an important role after World War I. During the Great Depression, the drought-stricken (Dust Bowl) regions of the United States were able to use soy to regenerate their soil because of its nitrogen-fixing properties. Farms were increasing production to meet with government demands, and Henry Ford became a promoter of soybeans. He In 1931, Ford hired chemists Robert Boyer and Frank Calvert to produce artificial silk. They succeeded in making a textile fiber of spun soy protein fibers, hardened or tanned in a formaldehyde bath, which was given the name Azlon. It never reached the commercial market. Soybean oil was used to paint the automobiles,[96] as well as fluid for shock absorbers. Tofu was introduced in Japanese American internment camps during World War II, and gradually spread into the mainstream cuisine. New varieties were developed to improve the blandness of soybean oil. The Counterculture in the San Francisco region popularize soy foods. Although practically unseen in 1900, by 2000 they covered upward of 70 million acres, second only to corn, and it became America's largest cash crop.[97]{{page needed|date=June 2018}} Caribbean and West IndiesThe soybean arrived in the Caribbean in the form of soy sauce made by Samuel Bowen in Savannah, Georgia, in 1767. It remains only a minor crop there, but its uses for human food are growing steadily.[98] Mediterranean areaThe soybean was first cultivated in Italy by 1760 in the Botanical Garden of Turin. During the 1780s it was grown in at least three other botanical gardens in Italy.[99] In 1935 soybeans are first introduced to Greece by Anton Brillmayer, an Austrian soybean breeder.[100] By 1939, soybeans have been cultivated in Greece.[101] An entire book has been published on the history of soybeans and soyfoods in Greece.[102] AustraliaWild soybeans were discovered in northeastern Australia in 1770 by explorers Banks and Solander. In 1804, the first soyfood product ("Fine India Soy" [sauce]) was sold in Sydney. In 1879, the first domesticated soybeans arrived in Australia, a gift of the Minister of the Interior Department, Japan.[103] Western EuropeThe soybean was first cultivated in France by 1779 (and perhaps as early as 1740). The two key early people and organizations introducing the soybean to France were the Society of Acclimatization (starting in 1855) and Li Yu-ying (from 1910). Li started a large tofu factory, where the first commercial soyfoods in France were made.[104] AfricaThe soybean first arrived in Africa via Egypt in 1857.[105] Central EuropeIn 1873, Professor Friedrich J. Haberlandt first became interested in soybeans when he obtained the seeds of 19 soybean varieties at the Vienna World Exposition (Wiener Weltausstellung). He cultivated these seeds in Vienna, and soon began to distribute them throughout Central and Western Europe. In 1875, he first grew the soybeans in Vienna, then in early 1876 he sent samples of seeds to seven cooperators in central Europe, who planted and tested the seeds in the spring of 1876, with good or fairly good results in each case.[106] Most of the farmers who received seeds from him cultivated them, then reported their results back to him. Starting in Feb. 1876, he published these results first in various journal articles, and finally in his magnum opus, Die Sojabohne (The Soybean) in 1878. In northern Europe lupin/lupine is known as the "soybean of the north"[107] A Hitler Youth manual from the 1930s promoted soy beans, which it called "Nazi beans" as an alternative to meat.[108] Central AsiaThe soybean is first in cultivated Transcaucasia in Central Asia in 1876, by the Dungans. This region has never been important for soybean production.[109] Central AmericaThe first reliable reference to the soybean in this region dates from Mexico in 1877.[110] South AmericaThe soybean first arrived in South America in Argentina in 1882.[111] Andrew McClung showed in the early 1950s that with soil amendments the Cerrado region of Brazil would grow soybeans.[112] The march of soybeans into deforested areas of the Amazon rain forest would come later.[50] Genetic modification{{further|Genetically modified soybean}}Soybeans are one of the "biotech food" crops that have been genetically modified, and genetically modified soybeans are being used in an increasing number of products. In 1995, Monsanto company introduced glyphosate-tolerant soybeans that have been genetically modified to be resistant to Monsanto's glyphosate herbicides through substitution of the Agrobacterium sp. (strain CP4) gene EPSP (5-enolpyruvyl shikimic acid-3-phosphate) synthase. The substituted version is not sensitive to glyphosate.[113] In 1997, about 8% of all soybeans cultivated for the commercial market in the United States were genetically modified. In 2010, the figure was 93%.[114] As with other glyphosate-tolerant crops, concern is expressed over damage to biodiversity.[115] A 2003 study[116] concluded the RR gene had been bred into so many different soybean cultivars, there had been little decline in genetic diversity, but "diversity was limited among elite lines from some companies". The widespread use of such types of GM soybeans in the Americas has caused problems with exports to some regions. GM crops require extensive certification before they can be legally imported into the European Union, where there is considerable supplier and consumer reluctance to use GM products for consumer or animal use. Difficulties with coexistence and subsequent traces of cross-contamination of non-GM stocks have caused shipments to be rejected and have put a premium on non-GM soy.[117] A 2006 United States Department of Agriculture report found the adoption of genetically engineered (GE) soy, corn and cotton reduced the amount of pesticides used overall, but did result in a slightly greater amount of herbicides used for soy specifically. The use of GE soy was also associated with greater conservation tillage, indirectly leading to better soil conservation, as well as increased income from off-farming sources due to the greater ease with which the crops can be managed. Though the overall estimated benefits of the adoption of GE soybeans in the United States was $310 million, the majority of this benefit was experienced by the companies selling the seeds (40%), followed by biotechnology firms (28%) and farmers (20%).[118] The patent on glyphosate-tolerant soybeans expired in 2014,[119] so benefits can be expected to shift.[120] In 2010, a team of American scientists announced they had sequenced the soybean genome—the first legume to be sequenced.[121][122] UsesAmong the legumes, the soybean is valued for its high (38–45%) protein content as well as its high (approximately 20%) oil content. Soybeans are the second-most valuable agricultural export in the United States, behind corn.{{Citation needed|reason=No citation for export claim|date=January 2017}} Approximately 85% of the world's soybean crop is processed into soybean meal and soybean oil, the remainder processed in other ways or eaten whole.[123] Soybeans can be broadly classified as "vegetable" (garden) or field (oil) types. Vegetable types cook more easily, have a mild, nutty flavor, better texture, are larger in size, higher in protein, and lower in oil than field types. Tofu, soy milk, & soy sauce, are among the top edible commodities made using soybeans. Producers prefer the higher protein cultivars bred from vegetable soybeans originally brought to the United States in the late 1930s. The "garden" cultivars are generally not suitable for mechanical combine harvesting because there is a tendency for the pods to shatter upon reaching maturity. Soybean oil{{Main|Soybean oil}}Soybean seed contains 18–19% oil.[143] To extract soybean oil from seed, the soybeans are cracked, adjusted for moisture content, rolled into flakes and solvent-extracted with commercial hexane. The oil is then refined, blended for different applications, and sometimes hydrogenated. Soybean oils, both liquid and partially hydrogenated, are exported abroad, sold as "vegetable oil", or end up in a wide variety of processed foods. Soybean meal{{Main|Soybean meal}}Soybean meal, or soymeal, is the material remaining after solvent extraction of oil from soybean flakes, with a 50% soy protein content. The meal is 'toasted' (a misnomer because the heat treatment is with moist steam) and ground in a hammer mill. Ninety-seven percent of soybean meal production globally is used as livestock feed.[124] Soybean meal is also used in some dog foods.[125] Livestock feedOne of the major uses of soybeans globally is as livestock feed, predominantly in the form of soybean meal. Spring grasses are rich in omega-3 fatty acids, whereas soy is predominantly omega-6. The soybean hulls, which mainly consist of the outer coats of the beans removed before oil extraction, can also be fed to livestock, as well as whole soybean seeds after processing.[126][127] Food for human consumptionIn addition to their use in livestock feed, soybean products are widely used for human consumption. Common soybean products include soy sauce, soy milk, tofu, soy meal, soy flour, textured vegetable protein (TVP), tempeh, soy lecithin and soybean oil. Soybeans may also be eaten with minimal processing, for example in the Japanese food {{Nihongo|edamame|枝豆|edamame}}, in which immature soybeans are boiled whole in their pods and served with salt. In China, Japan, and Korea, soybean and soybean products are a common part of the diet. Tofu (豆腐 dòufu) is thought to have originated in China, along with soy sauce and several varieties of soybean paste used as seasonings.{{citation needed|date=October 2013}} Japanese foods made from soya include miso (味噌), nattō (納豆), kinako (黄粉) and edamame (枝豆), as well as products made with tofu such as atsuage and aburaage. In China, whole dried soybeans are sold in supermarkets and used to cook a variety of dishes, usually after rehydration by soaking in water; they find their use in soup or as a savory dish. In Korean cuisine, soybean sprouts (콩나물 kongnamul) are used in a variety of dishes, and are the base ingredient in doenjang, cheonggukjang and ganjang. In Vietnam, soybeans are used to make soybean paste (tương) in the North with the most popular products are tương Bần, tương Nam Đàn, tương Cự Đà as a garnish for phở and gỏi cuốn dishes, as well as tofu (đậu hũ or đậu phụ or tàu hũ), soy sauce (nước tương), soy milk (nước đậu in the North or sữa đậu nành in the South), and đậu hũ nước đường (tofu sweet soup). In India, textured vegetable protein is often called meal maker or soya chunks and is a popular substitute for meat. ====Flour==== {{Commons category|Soy powder|Soybean flour}}Soy flour refers to soybeans ground finely enough to pass through a 100-mesh or smaller screen where special care was taken during desolventizing (not toasted) to minimize denaturation of the protein to retain a high protein dispersibility index, for uses such as food extrusion of textured vegetable protein. It is the starting material for production of soy concentrate and soy protein isolate. Soy flour can also be made by roasting the soybean, removing the coat (hull), and grinding into a flour. Soy flour is manufactured with different fat levels.{{sfn|Lim|2012|p=637}} Alternatively, raw soy flour omits the roasting step.
Soy lecithin can be added (up to 15%) to soy flour to make lecithinated soy flour. It increases dispersibility and gives it emulsifying properties.{{sfn|Lim|2012|p=637}} Soy flour has 50% protein and 5% fiber. It has higher levels of protein, thiamine, riboflavin, phosphorus, calcium, and iron than wheat flour. It does not contain gluten.{{sfn|Lim|2012|p=637}} As a result, yeast-raised breads made with soy flour are dense in texture. Among many uses, soy flour thickens sauces, prevents staling in baked food, and reduces oil absorption during frying. Baking food with soy flour gives it tenderness, moistness, a rich color, and a fine texture.{{sfn|Lim|2012|p=637}} Soy grits are similar to soy flour except the soybeans have been toasted and cracked into coarse pieces. Kinako is a soy flour used in Japanese cuisine. {{resize|Section reference: {{harvtxt|Smith|Circle|1972|p=442|note=Reference for soy flour section}}}}Soy-based infant formula{{anchor|Soy-based infant formula}}Soy-based infant formula (SBIF) is sometimes given to infants who are not being strictly breastfed; it can be useful for infants who are either allergic to pasteurized cow milk proteins or who are being fed a vegan diet. It is sold in powdered, ready-to-feed, and concentrated liquid forms. Some reviews have expressed the opinion that more research is needed to determine what effect the phytoestrogens in soybeans may have on infants.[134] Diverse studies have concluded there are no adverse effects in human growth, development, or reproduction as a result of the consumption of soy-based infant formula.[135][136][137] One of these studies, published in the Journal of Nutrition,[137] concludes that there are: ... no clinical concerns with respect to nutritional adequacy, sexual development, neurobehavioral development, immune development, or thyroid disease. SBIFs provide complete nutrition that adequately supports normal infant growth and development. FDA has accepted SBIFs as safe for use as the sole source of nutrition. Meat and dairy alternatives and extendersSoybeans can be processed to produce a texture and appearance similar to many other foods. For example, soybeans are the primary ingredient in many dairy product substitutes (e.g., soy milk, margarine, soy ice cream, soy yogurt, soy cheese, and soy cream cheese) and meat alternatives (e.g. veggie burgers). These substitutes are readily available in most supermarkets. Soy milk does not naturally contain significant amounts of digestible calcium. Many manufacturers of soy milk sell calcium-enriched products, as well. Soy is also used in tempeh: the beans (sometimes mixed with grain) are fermented into a solid cake. Soy products also are used as a low-cost substitute in meat and poultry products.[138][139] Food service, retail and institutional (primarily school lunch and correctional) facilities regularly use such "extended" products. Extension may result in diminished flavor, but fat and cholesterol are reduced. Vitamin and mineral fortification can be used to make soy products nutritionally equivalent to animal protein; the protein quality is already roughly equivalent. The soy-based meat substitute textured vegetable protein has been used for more than 50 years as a way of inexpensively extending ground beef without reducing its nutritional value.[25][4][140][141] Soy nut butterThe soybean is used to make a product called soy nut butter which is similar in texture to peanut butter.[142] Sweetened soybeanSweet boiled beans are popular in Japan and Korea and the sweet boiled soybeans are called as "Daizu no {{illm|Nimame|ja|煮豆}}" in Japan and Kongjorim ({{lang-ko|콩조림}}) in Korea. Sweet boiled beans are even used in sweetened buns, especially in {{illm|Mame Pan|ja|豆パン}}. The boiled and pasted edamame, called {{illm|Zunda|ja|ずんだ}}, is used as one of the Sweet bean pastes in Japanese confections. Coffee substituteRoasted and ground soybeans can be used as a caffeine-free substitute for coffee. After the soybeans are roasted and ground, they look similar to regular coffee beans or can be used as a powder similar to instant coffee, with aroma and flavor of roasted soybeans.[143] Other productsSoybeans with black hulls are used in Chinese fermented black beans, douchi, not to be confused with black turtle beans. Soybeans are also used in industrial products, including oils, soap, cosmetics, resins, plastics, inks, crayons, solvents, and clothing. Soybean oil is the primary source of biodiesel in the United States, accounting for 80% of domestic biodiesel production.[144] Soybeans have also been used since 2001 as fermenting stock in the manufacture of a brand of vodka.[145] In 1936, Ford Motor Company developed a method where soybeans and fibers were rolled together producing a soup which was then pressed into various parts for their cars, from the distributor cap to knobs on the dash board. Ford also informed in public relation releases that in 1935 over five million acres (20,000 km{{sup|2}}) was dedicated to growing soybeans in the United States.[146] HealthCancerAccording to the American Cancer Society, "There is growing evidence that eating traditional soy foods such as tofu may lower the risk of cancers of the breast, prostate, or endometrium (lining of the uterus), and there is some evidence it may lower the risk of certain other cancers." There is insufficient research to indicate whether taking soy dietary supplements has any effect on health or cancer risk.[147][171] PhytochemicalsSaponins, a class of natural surfactants (soaps), are sterols that are present naturally in a wide variety of plant foods, including vegetables, legumes, and cereals such as oats.[148] Whole soybeans contain from 0.17 to 6.16% saponins, 0.35 to 2.3% in defatted soy flour and 0.06 to 1.9% in tofu. Legumes such as soybean and chickpeas are the major source of saponins in the human diet. Sources of non-dietary saponins include alfalfa, sunflower, herbs and barbasco. Soy contains isoflavones like genistein and daidzein,[171] and glycitein, an O-methylated isoflavone which accounts for 5–10% of the total isoflavones in soy food products. Glycitein is a phytoestrogen with weak estrogenic activity, comparable to that of the other soy isoflavones.[149] Isoflavones{{Main|Isoflavones}}Soy's content of isoflavones are as much as 3 mg/g dry weight. Isoflavones are polyphenol compounds,[171] produced primarily by beans and other legumes, including peanuts and chickpeas. Isoflavones are closely related to flavonoids found in other plants, vegetables and flowers.[171] Soybeans contain the isoflavones, genistein and daidzein, which are phytoestrogen compounds[171] implicated as potentially beneficial factors in cardiovascular diseases[150] and numerous other conditions.[151] No beneficial effects, however, have been shown in clinical research to lower the risk of cardiovascular diseases, including high blood cholesterol levels,[150][152] prostate cancer or respiratory infections.[153] Cholesterol and heart diseasesThe dramatic increase in soyfood sales is largely credited to the Food and Drug Administration's (FDA) approval of soy as a cholesterol-lowering food, along with other heart and health benefits.[154] A 1995 review[155] concluded that soy protein is correlated with significant decreases in serum cholesterol, LDL (bad cholesterol) and triglycerides. However, HDL (good cholesterol) did not increase by a significant amount.[156] Soy phytoestrogens (isoflavones: genistein and daidzein) adsorbed onto the soy protein were suggested as the agent reducing serum cholesterol levels. The FDA granted the following health claim for soy: "25 grams of soy protein a day, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease."[154] One serving, (1 cup or 240 mL) of soy milk, for instance, contains 6 or 7 grams of soy protein. Solae resubmitted their original petition, asking for a more vague health claim, after their original was challenged and highly criticized. Solae also submitted a petition for a health claim that soy can help prevent cancer. They quickly withdrew the petition for lack of evidence and after more than 1,000 letters of protest were received. On 18 February 2008, Weston A. Price Foundation submitted a petition for removal of this health claim.[157] 25 g/day soy protein was established as the threshold intake because most trials used at least this much protein and not because less than this amount is inefficacious. In fact, there is evidence suggesting that lower amounts are indeed efficacious.[158] An American Heart Association (AHA) review of a decade long study of soy protein benefits casts doubt on the FDA allowed "Heart Healthy" claim for soy protein and does not recommend isoflavone supplementation. The review panel also found that soy isoflavones have not been shown to reduce post-menopausal "hot flashes" and the efficacy and safety of isoflavones to help prevent cancers of the breast, uterus or prostate is in question. However, AHA concludes that "many soy products should be beneficial to cardiovascular and overall health because of their high content of polyunsaturated fats, fiber, vitamins, and minerals and low content of saturated fat".[150] The AHA did not conduct a formal statistical analysis of the 22 studies upon which they based their estimate of the potency of soy protein. When such an analysis was conducted, Jenkins et al.[159] found that the AHA had considerably underestimated the hypocholesterolemic effects of soy protein. Further, when the analysis was limited to the 11 studies that provided evidence that the control and soy diets were matched, soy protein was found to lower LDL by 5.2 percent. This estimate is in line with the results of other recently published meta-analyses.[160][161][162] Furthermore, recent research suggests that soy protein decreases postprandial triglyceride levels, which is increasingly viewed as important for reducing coronary heart disease risk.[163] Phytic acid{{Main|Phytic acid}}Soybeans contain a high level of phytic acid, which has many effects including acting as an antioxidant and a chelating agent. The beneficial claims for phytic acid include reducing cancer,[164] minimizing diabetes,[165] and reducing inflammation.[166] However, phytic acid is also criticized for reducing vital minerals absorption due to its chelating effect, especially for diets already low in minerals.[167] Health risksAllergy{{Main|Soy allergy}}Allergy to soy is common, and the food is listed with other foods that commonly cause allergy, such as milk, eggs, peanuts, tree nuts, shellfish. The problem has been reported among younger children, and the diagnosis of soy allergy is often based on symptoms reported by parents and results of skin tests or blood tests for allergy. Only a few reported studies have attempted to confirm allergy to soy by direct challenge with the food under controlled conditions.[168] It is very difficult to give a reliable estimate of the true prevalence of soy allergy in the general population. To the extent that it does exist, soy allergy may cause cases of urticaria and angioedema, usually within minutes to hours of ingestion. In rare cases, true anaphylaxis may also occur. The reason for the discrepancy is likely that soy proteins, the causative factor in allergy, are far less potent at triggering allergy symptoms than the proteins of peanut and shellfish.[169] An allergy test that is positive demonstrates that the immune system has formed IgE antibodies to soy proteins. However, this is only a factor when soy proteins reach the blood without being digested, in sufficient quantities to reach a threshold to provoke actual symptoms. Soy can also trigger symptoms via food intolerance, a situation where no allergic mechanism can be proven. One scenario is seen in very young infants who have vomiting and diarrhoea when fed soy-based formula, which resolves when the formula is withdrawn. Older infants can suffer a more severe disorder with vomiting, diarrhoea that may be bloody, anemia, weight loss and failure to thrive. The most common cause of this unusual disorder is a sensitivity to cow's milk, but soy formulas can also be the trigger. The precise mechanism is unclear and it could be immunologic, although not through the IgE-type antibodies that have the leading role in urticaria and anaphylaxis. However, it is also self-limiting and will often disappear in the toddler years.[170] Phytoestrogens{{Main|Phytoestrogens}}Soybeans contain isoflavones called genistein and daidzein, which are one source of phytoestrogens in the human diet. Because most naturally occurring phytoestrogens act as selective estrogen receptor modulators, or SERMs, which do not necessarily act as direct agonists of estrogen receptors, normal consumption of foods that contain these phytoestrogens should not provide sufficient amounts to elicit a physiological response in humans.[171][172] Plant lignans associated with high fiber foods such as cereal brans and beans are the principal precursor to mammalian lignans which have an ability to bind to human estrogen sites. Soybeans are a significant source of mammalian lignan precursor secoisolariciresinol containing 13–273 µg/100 g dry weight.[173] Another phytoestrogen in the human diet with estrogen activity is coumestans, which are found in beans, split-peas, with the best sources being alfalfa, clover, and soybean sprouts. Coumestrol, an isoflavone coumarin derivative, is the only coumestan in foods.[174][175] Soybeans and processed soy foods are among the richest foods in total phytoestrogens (wet basis per 100 g), which are present primarily in the form of the isoflavones daidzein and genistein.[176] Human breast milk-containing or cow milk formula-containing diets provide 0.005-0.01 mg of isoflavone per day, while soy-based infant formulas provide 6–47 mg of isoflavone daily. This intake is several orders of magnitude greater than those provided by other nutrients.[177] Breast cancerAlthough considerable research has examined the potential for soy consumption to lower the risk of breast cancer in women, assessment of these studies indicates there is insufficient population evidence to make a conclusion about this relationship as of 2016.[151] A 2001 literature review suggested that women with current or past breast cancer should be aware of the risks of potential tumor growth when taking soy products, based on the effect of phytoestrogens to promote breast cancer cell growth in animals.[178] A 2006 commentary reviewed the relationship with soy and breast cancer, stating that soy may decrease the risk of breast cancer, but cautioned that the impact of isoflavones on breast tissue needs to be evaluated at the cellular level in women at high risk for breast cancer.[179] A high consumption of omega-6 polyunsaturated fatty acids, which are found in most types of vegetable oil including soybean oil, may increase the likelihood that postmenopausal women will develop breast cancer.[180] Another analysis suggests an inverse association between total polyunsaturated fatty acid intake and breast cancer risk.[181] A 2011 analysis of the literature said: "Our study suggests soy isoflavones intake is associated with a significant reduced risk of breast cancer incidence in Asian populations, but not in Western populations."[182] Prostate cancerA 2016 review concluded that "current evidence from observational studies and small clinical trials is not robust enough to understand whether soy protein or isoflavone supplements may help prevent or inhibit the progression of prostate cancer."[151] A 2010 review showed that neither soy foods nor isoflavone supplements alter measures of bioavailable testosterone or estrogen concentrations in men.[183] Soy consumption has been shown to have no effect on the levels and quality of sperm.[184] Meta-analyses on the association between soy consumption and prostate cancer risk in men concluded that dietary soy may lower the risk of prostate cancer.[185][186] BrainBecause of mixed results from animal studies and epidemiological studies, a (relatively definitive but expensive) controlled study of the impacts of soy on cognitive skills was performed; it found no impact. Though there is some evidence that estrogen can help protect and repair the brain after injury in rats,[187] there is also evidence that phytoestrogens may be harmful for the recovery of rats in other situations[188] that have sustained brain injury. Similarly, epidemiological evidence of humans eating soya products is currently divided: a study of Japanese men between 1965 and 1999 demonstrated a positive correlation between brain atrophy and consumption of tofu meals.[189] A 2001 literature review noted that disturbing data on soy's effect on the cognitive function of the elderly existed.[190] In 2008, an epidemiological study of 719 Indonesian elderly individuals found that tofu intake was associated with worse memory, but tempeh (a fermented soy product) intake was associated with better memory.[191] The cover article in the Center for Science in the Public Interest's September 2014 newsletter reported that a controlled study at USC prompted by suggestive epidemiological evidence found no impact on cognitive skills of years of soy vs. milk protein diet enrichment.[192] CarcinogenicityThough raw soy flour is known to be correlated with pancreatic cancer in rats[193] the cooked flour has not been found carcinogenic.[194][195] Whether soy might promote pancreatic cancer in humans is unknown because studies have not yet attempted to single out soy intake and the incidence of pancreatic cancer in humans, and the amount of soy fed to the rats is proportionately far larger than what humans would normally consume. However, the soy isoflavone genistein has been suggested as a chemopreventive agent against pancreatic cancer, by interfering with the chemical pathways that promote the creation and growth of tumors.[196] The Cancer Council of New South Wales, Australia has released a statement saying scientific research suggests that overall the moderate consumption of soy products does not appear to present a risk to women with breast cancer, and there is equivocal evidence that consuming large amounts of soy products may have a protective effect against developing breast and prostate cancer. However, the Council does not recommend taking soy dietary supplements as there is no evidence they are either effective or safe at preventing or treating cancers. Thyroid functionOne review noted that soy based foods may inhibit absorption of thyroid hormone medications required for treatment of hypothyroidism.[197] A 2015 scientific review by the European Food Safety Authority concluded that intake of isoflavones from supplements did not affect thyroid hormone levels in postmenopausal women.[198] GoutSoybeans and soy products contain significant amounts of purines, a class of organic compounds. For people who suffer from gout, eating foods containing moderate or high levels of purines may make the condition worse. The U.S. National Institutes of Health (NIH) recommends that gout sufferers limit consumption of soy products (although also suggesting that soy may have health benefits by reducing the risk for heart disease).[199] However, other researchers have found little or no association between consumption of purine-rich vegetables (including beans) and gout.[200][201] FuturesSoybean futures are traded on the Chicago Board of Trade and have delivery dates in January (F), March (H), May (K), July (N), August (Q), September (U), November (X). They are also traded on other commodity futures exchanges under different contract specifications:
See also{{portal|Soy|Food}}{{div col|small=yes|colwidth=20em}}
References1. ^{{cite web | url = http://eol.org/pages/641527/overview | title =Glycine max| publisher = Encyclopedia of Life|accessdate= 16 February 2012}} 2. ^Generally written in katakana, not kanji. 3. ^{{cite web|url= http://www.plantnames.unimelb.edu.au/Sorting/Glycine.html#max |title= Glycine max | publisher = Multilingual Multiscript Plant Name Database|accessdate= 16 February 2012}} 4. ^1 {{cite book | last =Riaz|first=Mian N.|title= Soy Applications in Food |publisher = CRC Press |location = Boca Raton, FL |year = 2006 | isbn =978-0-8493-2981-4}} 5. ^1 {{Cite journal|last=Hymowitz|first=T.|last2=Newell|first2=C.A.|date=1981-07-01|title=Taxonomy of the genusGlycine, domestication and uses of soybeans|journal=Economic Botany|language=en|volume=35|issue=3|pages=272–88|doi=10.1007/BF02859119|issn=0013-0001}} 6. ^{{cite book|first1 = Ram J.|last1 =Singh|first2 = Randall L.|last2 = Nelson|first3 = Gyuhwa| last3 = Chung|title = Genetic Resources, Chromosome Engineering, and Crop Improvement: Oilseed Crops, Volume 4|publisher = Taylor & Francis|location=London|date = November 2, 2006|page = 15|url=https://books.google.com/?id=lQ9bcjETlrIC&lpg=PA15&pg=PA15|isbn=978-0-8493-3639-3}} 7. ^{{cite conference|first=Theodore|last=Hymowitz|editor-first = J.B.|editor-last = Sinclair|editor2-first = G.L.|editor2-last=Hartman|title=Evaluation of Wild Perennial Glycine Species and Crosses For Resistance to Phakopsora|booktitle = Proceedings of the Soybean Rust Workshop|pages = 33–37|publisher = National Soybean Research Laboratory|date = August 9, 1995|location =Urbana, IL|accessdate =}} 8. ^{{cite journal|doi = 10.2307/2443241|first1 = C.A.|last1 = Newell|first2 = T.|last2 = Hymowitz|title = Hybridization in the Genus Glycine Subgenus Glycine Willd. (Leguminosae, Papilionoideae)|journal = American Journal of Botany|volume=70|issue = 3|pages = 334–48|date = March 1983|jstor = 2443241}} 9. ^Heuzé V., Tran G., Giger-Reverdin S., Lebas F., 2015. Perennial soybean (Neonotonia wightii). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/293 Last updated on September 30, 2015, 15:09 10. ^{{cite web|url=http://plants.jstor.org/taxon/jstor/Neonotonia.wightii|title=Neonotonia wightii in Global Plants on JSTOR}} 11. ^{{cite web|url=http://www.tropicalforages.info/key/Forages/Media/Html/Neonotonia_wightii.htm|title=Factsheet – Neonotonia wightii|work=tropicalforages.info|access-date=January 19, 2014|archive-url=https://web.archive.org/web/20170601233037/http://tropicalforages.info/key/Forages/Media/Html/Neonotonia_wightii.htm|archive-date=June 1, 2017|dead-url=yes|df=mdy-all}} 12. ^{{cite book|author1=Shekhar, Hossain|author2=Uddin, Howlader|author3=Zakir Hossain|author4=Kabir, Yearul|title=Exploring the Nutrition and Health Benefits of Functional Foods|date=July 22, 2016|publisher=IGI Global|page=223|url=https://books.google.com/?id=H2m_DAAAQBAJ&pg=PA223&lpg=PA223&dq=the+relationship+of+the+modern+soybean+to+wild-growing+species+can+no+longer+be+traced+with+any+degree+of+certainty#v=onepage&q=the%20relationship%20of%20the%20modern%20soybean%20to%20wild-growing%20species%20can%20no%20longer%20be%20traced%20with%20any%20degree%20of%20certainty&f=false|accessdate=22 November 2017|isbn=978-1-5225-0592-1}} 13. ^{{cite journal|author1=Ghulam Raza|author2=Mohan B. Singh|author3=Prem L. Bhalla|editor1-last=Atanassov|editor1-first=Atanas|title=In Vitro Plant Regeneration from Commercial Cultivars of Soybean|journal=BioMed Research International|date=June 11, 2017|pmc=5485301|accessdate=|pmid=28691031|doi=10.1155/2017/7379693|volume=2017|page=7379693}} 14. ^1 2 3 4 5 {{cite book|last1=Purcell|first1=Larry C.|last2=Salmeron|first2=Montserrat|last3=Ashlock|first3=Lanny|title=Arkansas Soybean Production Handbook – MP197|date=2014|chapter=Chapter 2|chapter-url=http://www.uaex.edu/publications/pdf/mp197/chapter2.pdf|publisher=University of Arkansas Cooperative Extension Service|location=Little Rock, AR|pages=1–8|url=http://www.uaex.edu/publications/mp-197.aspx|accessdate=21 February 2016}} 15. ^1 {{cite book|last1=Purcell|first1=Larry C.|last2=Salmeron|first2=Montserrat|last3=Ashlock|first3=Lanny|title=Arkansas Soybean Production Handbook – MP197|date=2000|chapter=Chapter 19: Soybean Facts|chapter-url=http://www.uaex.edu/publications/pdf/mp197/chapter19.pdf|publisher=University of Arkansas Cooperative Extension Service|location=Little Rock, AR|page=1|url=http://www.uaex.edu/publications/mp-197.aspx|accessdate=5 September 2016}} 16. ^{{cite book|last1=Bennett|first1=J. Michael|last2=Rhetoric|first2=Emeritus|last3=Hicks|first3=Dale R.|last4=Naeve|first4=Seth L.|last5=Bennett|first5=Nancy Bush|title=The Minnesota Soybean Field Book|date=2014|publisher=University of Minnesota Extension|location=St Paul, MN|page=33|url=http://www.extension.umn.edu/agriculture/soybean/docs/minnesota-soybean-field-book.pdf|accessdate=16 September 2016|archive-url=https://web.archive.org/web/20130930151502/http://www1.extension.umn.edu/agriculture/soybean/docs/minnesota-soybean-field-book.pdf|archive-date=September 30, 2013|dead-url=yes|df=mdy-all}} 17. ^{{cite book|last1=Shurtleff|first1=William|last2=Aoyagi|first2=Akiko|title=History of Soybeans and Soyfoods in Sweden, Norway, Denmark and Finland (1735-2015): Extensively Annotated Bibliography and Sourcebook|date=2015|publisher=Soyinfo Center|location=Lafayette, CA|isbn=978-1-928914-80-8|page=490|url=https://books.google.com/books?id=0gtpCgAAQBAJ&pg=PA490#v=onepage&q&f=false}} 18. ^{{cite journal |pages=225–30 |doi=10.1104/pp.100.1.225 |title=Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds |year=1992 |last1=Blackman |first1=S.A. |last2=Obendorf |first2=R.L. |last3=Leopold |first3=A.C. |journal=Plant Physiology |volume=100 |pmid=16652951 |issue=1|pmc=1075542}} 19. ^{{cite web|title=The Nitrogen cycle and Nitrogen fixation|author=Jim Deacon|publisher=Institute of Cell and Molecular Biology, The University of Edinburgh|url=http://www.biology.ed.ac.uk/archive/jdeacon/microbes/nitrogen.htm}} 20. ^{{Cite book|title=Encyclopedia of Grain Science|last=Corke, Walker and Wrigley|publisher=Academic Press|year=2004|isbn=978-0-12-765490-4|location=|pages=}} 21. ^{{cite book |author1=Circle, Sidney Joseph |author2=Smith, Allan H. |title=Soybeans: Chemistry and Technology |publisher=Avi Publishing|location=Westport, CT|year=1972|pages= 104, 163|isbn=978-0-87055-111-6}} 22. ^{{cite book|title=Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation|publisher=Food and Agriculture Organization of the United Nations (Food and Nutrition Paper No. 51)|location=Bethesda, MD |year=1989|isbn=978-92-5-103097-4}} 23. ^{{cite journal|last=Derbyshire|first = E.| last2 = Wright| first2 = D.J.| last3 = Boulter|first3 = D.|title = Legumin and Vicilin, Storage Proteins of Legume Seeds| journal = Phytochemistry| volume = 15| issue = 1| pages = 3–24| year = 1976| doi = 10.1016/S0031-9422(00)89046-9}} 24. ^{{cite journal |pmid=16748534 |pmc=1274878 |year=1949 |last1=Danielsson |first1=C.E. |title=Seed Globulins of the Gramineae and Leguminosae |volume=44 |issue=4 |pages=387–400 |journal=The Biochemical Journal|doi=10.1042/bj0440387 }} 25. ^1 {{cite web|url = http://nsrl.illinois.edu/content/benefits-soy | publisher =National Soybean Research Laboratory |title=Soy Benefits|accessdate = February 16, 2012}} 26. ^1 Seed Proteins; Peter R. Shewery and Rod Casey (Eds) 1999. Kluwer Academic Publishers, Dordrecht, The Netherlands 27. ^{{cite web|url=http://openagricola.nal.usda.gov/Record/IND44131228|title=Subunit structure of the vicilin-like globular storage...|work=usda.gov|deadurl=yes|archiveurl=https://web.archive.org/web/20150707233616/http://openagricola.nal.usda.gov/Record/IND44131228|archivedate=July 7, 2015|df=mdy-all}} 28. ^{{cite web|url=http://openagricola.nal.usda.gov/Record/IND20412524|title=Cocoa-specific aroma precursors are generated by proteolytic...|work=usda.gov|deadurl=yes|archiveurl=https://web.archive.org/web/20150707234934/http://openagricola.nal.usda.gov/Record/IND20412524|archivedate=July 7, 2015|df=mdy-all}} 29. ^{{Cite web |url=http://library.osu.edu/assets/Uploads/ScienceCafe/Barringer020310.pdf |title=Archived copy |access-date=August 24, 2013 |archive-url=https://web.archive.org/web/20120324131437/http://library.osu.edu/assets/Uploads/ScienceCafe/Barringer020310.pdf |archive-date=March 24, 2012 |dead-url=yes |df=mdy-all }} 30. ^{{cite journal|title=Comparative Proteomical Analysis of Zygotic Embryo and Endosperm from Coffea arabica Seeds|first1=Lívia L.|last1=Koshino|first2=Clarissa P.|last2=Gomes|first3=Luciano P.|last3=Silva|first4=Mirian T.S.|last4=Eira|first5=Carlos|last5=Bloch Jr.|first6=Octávio L.|last6=Franco|first7=Ângela|last7=Mehta|date=November 26, 2008|journal=J. Agric. Food Chem.|volume=56|issue=22|pages=10922–26|doi=10.1021/jf801734m|pmid = 18959416}} 31. ^{{cite web |url=http://www.alice.cnptia.embrapa.br/bitstream/doc/880533/1/Comparativeproteomical.pdf |title=Archived copy |accessdate=2013-08-24 |deadurl=yes |archiveurl=https://web.archive.org/web/20131203144038/http://www.alice.cnptia.embrapa.br/bitstream/doc/880533/1/Comparativeproteomical.pdf |archivedate=December 3, 2013 |df=mdy-all }} 32. ^{{cite journal|title=Evolution of seed storage globulins and cupin superfamily | doi=10.1134/S0026893311030162 | volume=45|issue = 4|journal=Molecular Biology|pages=529–35|year=2011 | last1 = Shutov | first1 = A.D.}} 33. ^1 {{cite journal | last1 = Youle | first1 = RJ | last2 = Huang | first2 = AHC | year = 1981 | title = Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseed of diverse species | url = | journal = Am J Bot | volume = 68 | issue = 1| pages = 44–48 | doi=10.2307/2442990| jstor = 2442990 }} 34. ^{{cite journal | pmc = 2570561 | pmid=18949071 | doi=10.2174/1874091X00802010016 | volume=2 | title=2S Albumin Storage Proteins: What Makes them Food Allergens? | year=2008 | journal=Open Biochem J | pages=16–28 | last1 = Moreno | first1 = FJ | last2 = Clemente | first2 = A}} 35. ^{{cite journal | pmc = 3326064 | pmid=22514740 | doi=10.1371/journal.pone.0035409 | volume=7 | issue=4 | title=Scalable purification and characterization of the anticancer lunasin peptide from soybean | year=2012 | journal=PLoS ONE | pages=e35409 | last1 = Seber | first1 = LE | last2 = Barnett | first2 = BW | last3 = McConnell | first3 = EJ |display-authors=etal | bibcode=2012PLoSO...735409S }} 36. ^{{cite web|url=https://www.sciencedaily.com/releases/2009/12/091202153946.htm|title=Soy peptide lunasin has anti-cancer, anti-inflammatory properties}} 37. ^{{cite web|url=http://www.meduniwien.ac.at/allergens/allfam/factsheet.php?allfam_id=AF050|title=AllFam – AllFam Allergen Family Factsheet|work=meduniwien.ac.at|deadurl=yes|archiveurl=https://web.archive.org/web/20160304045912/http://www.meduniwien.ac.at/allergens/allfam/factsheet.php?allfam_id=AF050|archivedate=March 4, 2016|df=mdy-all}} 38. ^{{cite book|work=intechopen.com|doi=10.5772/15110|title=Soybean – Biochemistry, Chemistry and Physiology|year=2011|last1=Obendorf|last2=l|first2=Ralph|last3=Suzanne|first3=Kosina|isbn=978-953-307-219-7}} 39. ^{{cite book|work=intechopen.com|doi=10.5772/18808|title=Soybean and Health|year=2011|last1=Wang|first1=Feng-Qing|last2=Yao|first2=Kang|last3=Wei|first3=Dong-Zhi|isbn=978-953-307-535-8}} 40. ^{{cite journal|url=http://jn.nutrition.org/content/129/7/1239|title=Sphingolipids in Food and the Emerging Importance of Sphingolipids to Nutrition|first1=Hubert|last1=Vesper|first2=Eva-Maria|last2=Schmelz|first3=Mariana N.|last3=Nikolova-Karakashian|first4=Dirck L.|last4=Dillehay|first5=Daniel V.|last5=Lynch|first6=Alfred H.|last6=Merrill|date=July 1, 1999|journal=J. Nutr.|volume=129|issue=7|pages=1239–50|via=jn.nutrition.org|pmid=10395583|doi=10.1093/jn/129.7.1239}} 41. ^{{cite journal | last1 = Fargione | first1 = Joseph | last2 = Hill | first2 = Jason | last3 = Tilman | first3 = David | last4 = Polasky | first4 = Stephen | last5 = Hawthorne | first5 = Peter | title = Land Clearing and the Biofuel Carbon Debt | journal = Science | volume = 319 | issue = 5867 | pages = 1235–38 | date = February 2008 | doi = 10.1126/science.1152747 | pmid = 18258862|bibcode = 2008Sci...319.1235F }} 42. ^{{cite news| url=http://news.bbc.co.uk/2/hi/science/nature/8516931.stm |publisher=BBC News | title=Big Business Leaves Big Forest Footprints | date=February 16, 2010}} 43. ^{{cite news|url=https://www.nytimes.com/2015/10/11/opinion/sunday/deforestation-and-drought.html|title=Deforestation and Drought|date=October 11, 2015|newspaper=The New York Times|last1=Robbins|first1=Jim}} 44. ^{{cite web |url=http://www.rainforestfoundation.org/agriculture/ |title=Agriculture |publisher=rainforestfoundation.org}} 45. ^{{cite web |url=https://blog.pachamama.org/how-animal-agriculture-affects-our-planet |title=How Animal Agriculture Affects Our Planet |publisher=pachamama.org}} 46. ^{{cite web |url=http://www.onegreenplanet.org/animalsandnature/this-is-how-animal-agriculture-causes-deforestation/ |title=This Is How Animal Agriculture Causes Deforestation |publisher=onegreenplanet.org|date=2014-06-05 }} 47. ^[https://www.worldfoodprize.org/en/laureates/20002009_laureates/2006_lobato_mcclung_paolinelli/ The World Food Prize: 2006 Laureates] 48. ^{{cite news |first = Susan|last = Lang|title = Cornell Alumnus Andrew Colin McClung Reaps 2006 World Food Prize|url = http://www.news.cornell.edu/stories/June06/World.Food.prize.ssl.html|work =Chronicle Online |publisher = Cornell University|date = June 21, 2006|accessdate =February 18, 2012}} 49. ^{{cite web|url=http://e360.yale.edu/feature/the_cerrado_brazils_other_biodiversity_hotspot_loses_ground/2393/ |title=The Cerrado: Brazil's Other Biodiverse Region Loses Ground|date=April 14, 2011|last=Pearce|first=Fred|publisher=Yale University|accessdate=February 18, 2012}} 50. ^1 {{cite web|url=http://www.vqronline.org/essay/soy-amazon|title=Soy in the Amazon|publisher=vqronline.org}} 51. ^{{Cite journal | doi=10.1023/A:1024191913296|title = The success of BNF in soybean in Brazil| journal=Plant and Soil| volume=252| pages=1–9|year = 2003|last1 = Alves|first1 = Bruno J.R.| last2=Boddey| first2=Robert M.| last3=Urquiaga| first3=Segundo}} 52. ^{{cite journal|title=Molybdenum Uptake by Forage Crops Grown on Sewage Sludge-Amended Soils in the Field and Greenhouse|url=http://soilandwater.bee.cornell.edu/publications/McBrideJEQ00.pdf|journal=Journal of Environmental Quality|date=May–June 2000|volume=29|issue=3|last1=McBride|first1=M.B.|last2=Richards|first2=B.K.|last3=Steenhuis|first3=T.|last4=Spiers|first4=G.|pages=848–54|doi=10.2134/jeq2000.00472425002900030021x}} 53. ^{{cite journal|title=Residual Effects of Sewage Sludge on Soybean: II. Accumulation of Soil and Symbiotically Fixed Nitrogen|journal=Journal of Environmental Quality|date=December 9, 1985|volume=16|issue=2|last1=Heckman|first1=J.R.|last2=Angle|first2=J.S.|last3=Chaney|first3=R.L.|pages=118–24|doi=10.2134/jeq1987.00472425001600020005x}} 54. ^Herbert, Ames, Cathy Hull, and Eric Day. "Corn Earworm Biology and Management in Soybeans." Virginia Cooperative Extension, Virginia State University (2009). 55. ^1 {{citeweb|website=FAOSTAT|title=Crops|url=http://www.fao.org/faostat/en/#data/QC/|access-date=19 November 2018}}6 56. ^FAO Production / Crops 57. ^{{cite web |title=World Agricultural Outlook Report |url=https://www.usda.gov/oce/commodity/wasde/Secretary_Briefing.pdf |website=www.usda.gov|accessdate=20 May 2018}} 58. ^{{Cite web | date = 2016 | url = http://www.globalsoybeanproduction.com/default.asp | title = Global Soybean Production, 2016 Forecast (USDA) | publisher = GlobalSoyabeanProduction.com|accessdate=22 May 2016}} 59. ^1 2 {{cite web | url=http://faostat3.fao.org/browse/Q/QC/E | title=Soybeans, Production/Crops/World for 2014 | publisher=Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT) | date=2015 | accessdate=23 May 2016}} 60. ^{{cite book |last=Patel |first=Raj |title=Stuffed & Starved from Farm to Fork: The Hidden Battle for the World Food System |publisher=Portobello Books Ltd |location=London |year=2008 |pages=169–73|isbn=978-1-933633-49-7}} 61. ^{{cite journal|last=Wik|first=Reynold Millard|title=Henry Ford's Science and Technology for Rural America |journal=Technology and Culture |volume=3|issue=3|date=Summer 1962|pages=247–58|doi=10.2307/3100818|jstor=3100818}} 62. ^{{cite web|url=http://ageconsearch.umn.edu/bitstream/21109/1/sp06so03.pdf |title=Competitive Analysis of Chinese Soybean Import Suppliers – U.S., Brazil, and Argentina |author1=Baohui Song |author2=Mary A. Marchant |author3=Shuang Xu |year=2006 |publisher=Research in Agricultural & Applied Economics, University of Minnesota |work=American Agricultural Economics Association Annual Meetings |deadurl=yes |archiveurl=https://web.archive.org/web/20130905234839/http://ageconsearch.umn.edu/bitstream/21109/1/sp06so03.pdf |archivedate=September 5, 2013 }} 63. ^Shurtleff, William; Aoyagi, Akiko. 2013. History of Whole Dry Soybeans, Used as Beans, or Ground, Mashed or Flaked (240 BCE to 2013). Lafayette, California. 950 pp. 64. ^{{cite journal |last1=Lee |first1=Gyoung-Ah |last2=Crawford |first2=Gary W. |last3=Liu |first3=Li |last4=Sasaki |first4=Yuka |last5=Chen |first5=Xuexiang |title=Archaeological Soybean (Glycine max) in East Asia: Does Size Matter? |journal=PLoS ONE |date=November 4, 2011 |volume=6 |issue=11 |doi=10.1371/journal.pone.0026720 |pages=e26720 |pmid=22073186 |pmc=3208558|bibcode=2011PLoSO...626720L }} 65. ^{{cite encyclopedia|url=http://www.britannica.com/EBchecked/topic/557184/soybean|title=Soybean|encyclopedia=Encyclopædia Britannica Online|accessdate=February 18, 2012}} 66. ^{{cite web|url=http://www.soya.be/history-of-soybeans.php|title=History of Soybeans|publisher=Soya – Information about Soy and Soya Products|accessdate=February 18, 2012}} 67. ^1 The History of Agriculture By Britannica Educational Publishing, p. 48 68. ^1 2 3 {{cite journal|title=Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?|journal=PLOS ONE|doi=10.1371/journal.pone.0026720|volume=6|issue = 11|pages=e26720|pmid=22073186|pmc=3208558 | last1 = Lee | first1 = GA | last2 = Crawford | first2 = GW | last3 = Liu | first3 = L | last4 = Sasaki | first4 = Y | last5 = Chen | first5 = X | year=2011|bibcode=2011PLoSO...626720L}} 69. ^Great Soviet encyclopedia, ed. A.M. Prokhorov (New York: Macmillan, London: Collier Macmillan, 1974–1983) 31 volumes, three volumes of indexes. Translation of third Russian edition of Bol'shaya sovetskaya entsiklopediya 70. ^{{cite book |title=Tylenchida: Parasites of Plants and Insects|publisher=New York: CABI Pub. 389. p. (2001)|last= Siddiqi|first= Mohammad Rafiq}} 71. ^Lee G‐A, Crawford GW, Liu L, Sasaki Y, Chen X. 2011. Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6: e26720. 72. ^Zhao Z. 2004. Floatation: a paleobotanic method in field archaeology. Archaeology3: 80–87. 73. ^1 {{cite book |last=Stark|first=Miriam T. |title=Archaeology of Asia (Blackwell Studies in Global Archaeology) |publisher=Wiley-Blackwell |location=Hoboken, NJ |year=2005 |url=https://books.google.com/books?id=PoDFdOstSNwC&pg=PA81#v=onepage&q&f=false|page=81|isbn=978-1-4051-0213-1|accessdate=February 18, 2012}} 74. ^Shurtleff, William; Aoyagi, Akiko. 2012. History of Soybeans and Soyfoods in Japan. Lafayette, California. 3,337 pp. (11,505 references, 445 photos and illustrations. Free online) 75. ^{{cite book |title=People, Plants and Genes: The Story of Crops and Humanity |location=New York |publisher=Oxford University Press |pages=122–23 |year=2007 |last= Murphy|first= Denis J.}} 76. ^{{cite web|url=http://www.soyinfocenter.com/HSS/soymilk1.php|title=History of Soymilk and Dairy-like Soymilk Products|publisher=Soy Info Center|year=2007|accessdate=February 18, 2012}} 77. ^{{cite web|url=http://www.soyinfocenter.com/chronologies_of_soyfoods-tofu.php|title=Chronology of Tofu Worldwide 965 A.D. to 1929|publisher=Soy Info Center|accessdate=February 18, 2012}} 78. ^{{Cite web|url=https://dictionary.cambridge.org/dictionary/indonesian-english/kedelai|title=kedelai translate Indonesian to English: Cambridge Dictionary|website=dictionary.cambridge.org|language=en|access-date=2018-01-21}} 79. ^{{cite web | title=Sejarah Tempe| author=Hendri F. Isnaeni | date=9 July 2014| publisher=Historia |url=http://historia.id/kuliner/sejarah-tempe | language=Indonesian | accessdate= 21 January 2018}} 80. ^{{cite book|url=http://www.soyinfocenter.com/books/139|title=History of Soybeans and Soyfoods in Southeast Asia (1770–2010)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-30-3|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|year=2010}} 81. ^The Book of Tempeh, 2nd ed., by W. Shurtleff and A. Aoyagi (2001, Ten Speed Press, p. 145) 82. ^{{cite book|url=http://www.soyinfocenter.com/books/140|title=History of Soybeans and Soyfoods in South Asia / Indian Subcontinent (1656–2010)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-31-0|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|year=2010}} 83. ^Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Spain and Portugal (1603-2015)." Lafayette, California: Soyinfo Center. (624 references; 23 photos and illustrations. Free online.) 84. ^{{cite book| title = An Anxious Pursuit: Agricultural Innovation and Modernity in the Lower South, 1730–1815| url = https://books.google.com/books?id=_I0_gkKKMM8C&pg=PA147#v=onepage&q&f=false| last1 = Chaplin| first1 = J.E.| year = 1996| isbn = 978-0-8078-4613-1| publisher = University of North Carolina Press| page = 147}} 85. ^{{Cite journal|last=Hymowitz|first=T.|date=1970-10-01|title=On the domestication of the soybean|journal=Economic Botany|language=en|volume=24|issue=4|pages=408–21|doi=10.1007/BF02860745|issn=0013-0001}} 86. ^{{cite web|url=http://www.caes.uga.edu/extension/irwin/anr/Vol29.1.pdf.pdf |archiveurl=https://web.archive.org/web/20150923195804/http://www.caes.uga.edu/extension/irwin/anr/Vol29.1.pdf.pdf |archivedate=September 23, 2015 |publisher=Georgia Soybean News |website=caes.uga.edu |title=Another First for Georgia Agriculture |author=Roger Boerma |page=5 |volume=1 |issue=1 |deadurl=yes |df= }} 87. ^{{cite web|url=https://news.google.com/newspapers?nid=360&dat=19940831&id=9eMyAAAAIBAJ&sjid=xD4DAAAAIBAJ&pg=6901,2669493&hl=en|publisher=The Rockmart Journal|title=Soybeans planted first in Georgia|date=21 August 1994|website=Google News Archive}} 88. ^{{cite book|title=Eat Your Food! Gastronomical Glory from Garden to Gut: A Coastalfields Cookbook, Nutrition Textbook, Farming Manual and Sports Manual|url=https://books.google.com/books?id=BtZ2oNGyv6AC&pg=PR2|accessdate=4 May 2013|date=April 2007|publisher=Coastalfields Press|isbn=978-0-9785944-8-0}} 89. ^{{cite web|url=http://www.nsrl.uiuc.edu/aboutsoy/history4.html |title=NSRL : About Soy |date=November 22, 2003 |deadurl=bot: unknown |archiveurl=https://web.archive.org/web/20031122134643/http://www.nsrl.uiuc.edu/aboutsoy/history4.html |archivedate=November 22, 2003 |df= }} 90. ^{{cite book|url=http://www.soyinfocenter.com/books/137|title=History of Soybeans and Soyfoods in Canada (1831–2010)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-28-0|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|year=2010}} 91. ^{{cite web|url=http://www.aces.uiuc.edu/vista/html_pubs/irspsm91/kunitz.html|title=The Kunitz Soybean Variety|work=uiuc.edu|date=2018-02-20}} 92. ^{{cite web|url=http://cropsci.illinois.edu/news/scientists-create-new-low-allergen-soybean|title=Scientists create new low-allergen soybean|work=illinois.edu|deadurl=yes|archiveurl=https://web.archive.org/web/20150605195117/http://cropsci.illinois.edu/news/scientists-create-new-low-allergen-soybean|archivedate=June 5, 2015|df=mdy-all}} 93. ^{{cite web|url=http://www.soyinfocenter.com/HSS/morse_and_piper.php|title=William J. Morse and Charles V. Piper|work=soyinfocenter.com}} 94. ^{{cite web|url=http://www.soyinfocenter.com/books/147|title=William J. Morse – History of His Work with Soybeans and Soyfoods (1884–1959) – SoyInfo Center|work=soyinfocenter.com}} 95. ^{{cite book |last1=Piper |first1=Charles V. |author1-link=Charles Piper |last2=Morse |first2=William J. |year=1923 |title=The Soybean |url=https://books.google.com/books?id=6hRCAAAAYAAJ |series=Agricultural and Biological Publications |location=New York |publisher=McGraw-Hill Book Company |oclc=252589754 |via=google.com}} 96. ^{{cite book|author=Joe Schwarcz|title=The Fly in the Ointment: 63 Fascinating Commentaries on the Science of Everyday Life|url=https://books.google.com/books?id=rmIbClRzfeoC&pg=PA193|accessdate=4 May 2013|year=2004|publisher=ECW Press|isbn=978-1-55022-621-8|page=193}} 97. ^{{Cite book |last=Roth |first=Matthew |year=2018 |title=Magic Bean: The Rise of Soy in America |location=Lawrence, KS |publisher=University Press of Kansas |isbn=978-0-7006-2633-5 |oclc=1012618664 |page=}} 98. ^{{cite book|url=http://www.soyinfocenter.com/books/126|title=History of Soybeans and Soyfoods in the Caribbean / West Indies (1767–2008)|publisher=Soy Info Center|accessdate=February 18, 2012|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi}} 99. ^Shurtleff, W.; Aoyagi, A. (2015). History of Soybeans and Soyfoods in Italy (1597–2015). Lafayette, California: Soyinfo Center. 618 pp. (1,381 references; 93 photos and illustrations. Free online.) 100. ^Brillmayer. 1947. "Die Kultur der Soja in Oesterreich", pp. 14-18 101. ^Matagrin. 1939. "Le Soja et les Industries du Soja," p. 47-48 102. ^Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Greece, the European Union and Small Western European Countries (1939-2015)." Lafayette, California: Soyinfo Center. 243 pp. (462 references; 20 photos and illustrations. Free online. {{ISBN|978-1-928914-81-5}}). 103. ^{{cite book|url=http://www.soyinfocenter.com/books/138|title=History of Soybeans and Soyfoods in Australia, New Zealand and Oceania (1770–2010)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-29-7|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|year=2010}} 104. ^Shurtleff, W.; Aoyagi, A.; 2015. "History of Soybeans and Soyfood in France (1665-2015)". Lafayette, California; Soyinfo Center. 1,202 pp. (3,405 references; 145 photos and illustrations. Free online). 105. ^{{cite book|url=http://www.soyinfocenter.com/books/134|title=History of Soybeans and Soyfoods in Africa (1857–2009)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-25-9|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|date=2009}} 106. ^Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Austria and Switzerland (1781-2015)." Lafayette, California: Soyinfo Center. 705 pp. (1444 references; 128 photos and illustrations). Free online. {{ISBN|978-1-928914-77-8}}. 107. ^{{cite news|url=https://www.nytimes.com/2011/11/17/business/energy-environment/soy-substitute-edges-its-way-into-european-meals.html?pagewanted=all&_r=0|title=Soy Substitute Edges Its Way Into European Meals|last=Ross|first=Kate|newspaper=New York Times|date=November 16, 2011|accessdate=February 28, 2015}} 108. ^{{cite news|url=https://www.telegraph.co.uk/history/world-war-two/9859294/Hitlers-food-taster-speaks-of-Fuhrers-vegetarian-diet.html|title=Hitler's food taster speaks of Führer's vegetarian diet|newspaper=telegraph.co.uk}} 109. ^{{cite book|url=http://www.soyinfocenter.com/books/123|title=History of Soybeans and Soyfoods in Central Asia (1876–2008)|publisher=Soy Info Center|accessdate=February 18, 2012|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi}} 110. ^{{cite web|url=http://www.soyinfocenter.com/books/128|title=History of Soybeans and Soyfoods in Mexico and Central America (1877–2009)|publisher=Soy Info Center|accessdate=February 18, 2012|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi}} 111. ^{{cite book|url=http://www.soyinfocenter.com/books/132|title=History of Soybeans and Soyfoods in South America (1882–2009)|publisher=Soy Info Center|accessdate=February 18, 2012|isbn=978-1-928914-23-5|first=William|last=Shurtleff|first2=Akiko|last2=Aoyagi|year=2009}} 112. ^{{cite web|url=http://www.news.cornell.edu/stories/2006/06/cornellian-reaps-2006-world-food-prize|title=Cornell alumnus Andrew Colin McClung reaps 2006 World Food Prize|publisher=news.cornell.edu – Cornell Chronicle}} 113. ^{{cite journal |pages=1451–61 |doi=10.2135/cropsci1995.0011183X003500050032x |title=Development, Identification, and Characterization of a Glyphosate-Tolerant Soybean Line |year=1995 |last1=Padgette |first1=S.R. |last2=Kolacz |first2=K.H. |last3=Delannay |first3=X. |last4=Re |first4=D.B. |last5=Lavallee |first5=B.J. |last6=Tinius |first6=C.N. |last7=Rhodes |first7=W.K. |last8=Otero |first8=Y.I. |last9=Barry |first9=G.F. | displayauthors=8 |journal=Crop Science |volume=35 |issue=5}} 114. ^National Agricultural Statistics Board annual report, June 30, 2010. Retrieved July 23, 2010. 115. ^{{cite book |last= Liu |first= KeShun |title= Soybeans: Chemistry, Technology, and Utilization |year=1997 |publisher= Springer |location=Berlin|isbn= 978-0-8342-1299-2 |page= 532}} 116. ^{{cite journal |doi=10.2135/cropsci2003.0409 |author=Sneller CH |title=Impact of Transgenic Genotypes and Subdivision on Diversity Within Elite North American Soybean Germplasm |journal=Crop Science |volume=43 |pages=409–14 |year=2003}} 117. ^{{cite news|url=|title= EU Caught in Quandary Over GMO Animal Feed Imports |newspaper=The Guardian|date= December 7, 2007}} 118. ^{{cite web| publisher = United States Department of Agriculture|url=http://www.ers.usda.gov/publications/eib11/eib11.pdf|archiveurl=https://www.webcitation.org/5qfjgPesZ?url=http://www.ers.usda.gov/publications/eib11/eib11.pdf|archivedate=2010-06-22 |title = The First Decade of Genetically Engineered Crops in the United States |last = Fernandez-Cornejo | first = J. | author2 = Caswell, Margriet|date = April 1, 2006|access-date=February 18, 2012}} 119. ^{{cite news|url=https://www.nytimes.com/2009/12/18/business/18seed.html|title=As Patent Ends, a Seed's Use Will Survive|date=December 18, 2009|newspaper=The New York Times|last1=Pollack|first1=Andrew}} 120. ^{{cite web|url=http://extension.udel.edu/kentagextension/2008/11/18/soybean-seed-decisions-2009/|title=Cooperative Extension ‹ Log In}} 121. ^{{cite journal |title=Genome sequence of the palaeopolyploid soybean |journal=Nature |date=January 14, 2010 |issn=1476-4687 |oclc=01586310 |doi=10.1038/nature08670 |bibcode = 2010Natur.463..178S |author10-link=Jianlin Cheng |pages=178–83 |volume=463 |issue=7278 |first1=Jeremy |last1=Schmutz |first2=Steven B. |last2=Cannon |first3=Jessica |last3=Schlueter |first4=Jianxin |last4=Ma |first5=Therese |last5=Mitros |first6=William |last6=Nelson |first7=David L. |last7=Hyten |first8=Qijian |last8=Song |first9=Jay J. |last9=Thelen |first10=Jianlin |last10=Cheng |first11=Dong |last11=Xu |first12=Uffe |last12=Hellsten |first13=Gregory D. |last13=May |first14=Yeisoo |last14=Yu |first15=Tetsuya |last15=Sakurai |first16=Taishi |last16=Umezawa |first17=Madan K. |last17=Bhattacharyya |first18=Devinder |last18=Sandhu |first19=Babu |last19=Valliyodan |first20=Erika |last20=Lindquist |first21=Myron |last21=Peto |first22=David |last22=Grant |first23=Shengqiang |last23=Shu |first24=David |last24=Goodstein |first25=Kerrie |last25=Barry |first26=Montona |last26=Futrell-Griggs |first27=Brian |last27=Abernathy |first28=Jianchang |last28=Du |first29=Zhixi |last29=Tian |first30=Liucun |last30=Zhu |first31=Navdeep |last31=Gill |first32=Trupti |last32=Joshi |first33=Marc |last33=Libault |first34=Anand |last34=Sethuraman |first35=Xue-Cheng |last35=Zhang |first36=Kazuo |last36=Shinozaki |first37=Henry T. |last37=Nguyen |first38=Rod A. |last38=Wing |first39=Perry |last39=Cregan |first40=James |last40=Specht |first41=Jane |last41=Grimwood |first42=Dan |last42=Rokhsar |first43=Gary |last43=Stacey |first44=Randy C. |last44=Shoemaker |first45=Scott A. |last45=Jackson |pmid=20075913}} 122. ^{{cite web|url=https://www.sciencedaily.com/releases/2010/01/100113131457.htm|title=Soybean Genome Sequenced: Analysis Reveals Pathways for Improving Biodiesel, Disease Resistance, and Reducing Waste Runoff|publisher=Science Daily|date=January 13, 2010|accessdate=February 18, 2012}} 123. ^{{cite web|url=http://www.soyatech.com/soy_facts.htm|title=Soy Facts|publisher=Soyatech|accessdate=Jan 24, 2017|deadurl=yes|archiveurl=https://web.archive.org/web/20170112075924/http://www.soyatech.com/soy_facts.htm|archivedate=January 12, 2017|df=mdy-all}} 124. ^1 {{Cite web|title = Livestock's long shadow: environmental issues and options|url = http://www.fao.org/docrep/010/a0701e/a0701e00.HTM|website = www.fao.org|access-date = 2016-01-15}} 125. ^{{cite journal|first = Edmund W.|last = Lusas|first2 = Mian N.|last2 = Riaz|year = 1995|url = http://jn.nutrition.org/content/125/3_Suppl/573S.full.pdf|title = Soy Protein Products: Processing and Use|journal = Journal of Nutrition|issue = 125|pages = 573S–80S|access-date = January 20, 2013|archive-url = https://web.archive.org/web/20121207023240/http://jn.nutrition.org/content/125/3_Suppl/573S.full.pdf|archive-date = December 7, 2012|dead-url = yes|df = mdy-all}} 126. ^Heuzé V., Thiollet H., Tran G., Lessire M., Lebas F., 2017. Soybean hulls. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/719 127. ^Heuzé V., Tran G., Nozière P., Lessire M., Lebas F., 2017. Soybean seeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/42 Last updated on July 4, 2017, 10:37 128. ^{{cite journal | doi=10.1007/BF02664977 | volume=41 | issue=9 | title=Production and nutritional evaluation of extrusion-cooked full-fat soybean flour | journal=Journal of the American Oil Chemists' Society | pages=607–14 | year=1964 | last1 = Mustakas | first1 = G.C.}} 129. ^{{cite book|title=World Protein Resources|year=1966|volume=57|pages=101–11|doi=10.1021/ba-1966-0057.ch008|chapter = Full-Fat Soybean Flours by Continuous Extrusion Cooking|series = Advances in Chemistry|last1 = Mustakas|first1 = GUS C.|last2=Griffin|first2=Edward L.|last3=Sohns|first3=Virgil E.|isbn=978-0-8412-0058-6}} 130. ^{{cite web|url=http://cornell-classic.univcomm.cornell.edu/search/?tab=facts&id=188 |title=Cornell University |date=May 9, 2015 |deadurl=bot: unknown |archiveurl=https://web.archive.org/web/20150509122617/http://cornell-classic.univcomm.cornell.edu/search/?tab=facts&id=188 |archivedate=May 9, 2015 |df= }} 131. ^{{cite web|url=http://www.motherearthnews.com/real-food/whole-wheat-bread-mccays-miracle-loaf-zmaz81sozhun.aspx|title=Whole Wheat Bread Recipe: McCay's Miracle Loaf – Real Food |publisher=Mother Earth News}} 132. ^{{cite web|url=http://articles.chicagotribune.com/1987-05-21/entertainment/8702070654_1_amino-acids-soy-flour-nonfat-dry-milk|title=Cornell Bread A Heavyweight When It Comes To Nutrition And Fiber}} 133. ^{{cite web|url=http://www.fao.org/docrep/t0532e/t0532e05.htm|title=Technology of production of edible flours and protein products from soybeans. Chapter 4.}} 134. ^{{cite journal |pmid=14599051 |year=2003 |last1=Miniello |first1=VL |last2=Moro |first2=GE |last3=Tarantino |first3=M |last4=Natile |first4=M |last5=Granieri |first5=L |last6=Armenio |first6=L |title=Soy-based Formulas and Phyto-oestrogens: A Safety Profile |volume=91 |issue=441 |pages=93–100 |journal=Acta Paediatrica|doi=10.1111/j.1651-2227.2003.tb00655.x}} 135. ^{{cite journal |pages=191–96 |doi=10.1515/JPEM.2004.17.2.191 |title=Soy Protein Formulas in Children: No Hormonal Effects in Long-term Feeding |year=2004 |last1=Giampietro |first1=P.G. |last2=Bruno |first2=G. |last3=Furcolo |first3=G. |last4=Casati |first4=A. |last5=Brunetti |first5=E. |last6=Spadoni |first6=G.L. |last7=Galli |first7=E. |journal=Journal of Pediatric Endocrinology and Metabolism |volume=17 |issue=2 |pmid=15055353}} 136. ^{{cite journal |pages=807–14 |doi=10.1001/jama.286.7.807 |title=Exposure to Soy-Based Formula in Infancy and Endocrinological and Reproductive Outcomes in Young Adulthood |year=2001 |last1=Strom |first1=B.L. |journal=JAMA: The Journal of the American Medical Association|volume=286 |issue=7 |pmid=11497534 |last2=Schinnar |first2=R |last3=Ziegler |first3=EE |last4=Barnhart |first4=KT |last5=Sammel |first5=MD |last6=MacOnes |first6=GA |last7=Stallings |first7=VA |last8=Drulis |first8=JM |last9=Nelson |first9=SE| displayauthors=8 }} 137. ^1 {{cite journal |first1=Russell J. |last1=Merritt |first2=Belinda H. |last2=Jenks |title=Safety of Soy-Based Infant Formulas Containing Isoflavones: The Clinical Evidence |journal=The Journal of Nutrition|pmid=15113975 |url=http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=15113975 |year=2004 |volume=134 |issue=5 |pages=1220S–24S|doi=10.1093/jn/134.5.1220S }} 138. ^{{cite book |author=Hoogenkamp, Henk W. |title=Soy Protein and Formulated Meat Products |publisher=CABI Publishing |location=Wallingford, Oxon|year=2005 |page=14 |isbn=978-0-85199-864-0|url=https://books.google.com/?id=IRIRBOd_oTcC&printsec=frontcover&dq=soy+protein#v=snippet&q=substiture&f=false |accessdate=February 18, 2012}} 139. ^{{cite book |last=Endres|first=Joseph G.|title=Soy Protein Products |publisher=AOCS Publishing |location=Champaign-Urbana, IL |year=2001 |pages=43–44 |isbn=978-1-893997-27-1 |url=https://books.google.com/?id=3RNa1vS0sZYC&pg=PA15&lpg=PA15&dq=Soy+Protein+Products++endres#v=onepage&q=Soy%20Protein%20Products%20%20endres&f=false |accessdate=February 18, 2012}} 140. ^{{cite book |last1=Circle|first1=Sidney Joseph|last2=Smith|first2=Allan H. |title=Soybeans: Chemistry and Technology |publisher=Avi Publishing |location=Westport, CT|year=1972 |pages=7, 350 |isbn=978-0-87055-111-6|url=https://books.google.com/?id=A3NRAAAAMAAJ&q=without+reducing+its+nutritional+value#search_anchor |accessdate=February 18, 2012}} 141. ^{{cite book |last=Liu|first=KeShun |title=Soybeans : Chemistry, Technology, and Utilization |publisher=Aspen Publishers |location=Gaithersburg, MD |year=1997 |page= 69|isbn=978-0-8342-1299-2 |url= https://books.google.com/?id=Plmi4WfHos4C&q=reducing+nutritional+value#v=snippet&q=%20nutrition%20value&f=false|accessdate=February 18, 2012}} 142. ^{{cite web | url=http://www.soyfoods.org/soy-products/soy-fact-sheets/soy-nut-butter-fact-sheet | title=Soy fact sheets: soy nut butter | publisher=Soyfoods Association of North America, Washington, DC | date=2016 | accessdate=1 November 2016}} 143. ^{{cite book|url=https://books.google.com/?id=YIP-szICnhIC|title=History of Whole Dry Soybeans, Used as Beans, or Ground, Mashed or Flaked (240 BCE to 2013); see page 254|author=William Shurtleff, Akiko Aoyagi|publisher=Soyinfo Center|year=2013|isbn=978-1-928914-57-0}} 144. ^{{cite web|title=Sustainability Fact Sheet|publisher=National Biodiesel Board|date= April 2008|url=http://biodiesel.org/resources/sustainability/pdfs/SustainabilityFactSheet.pdf|accessdate=February 18, 2012}} 145. ^{{cite web|url=http://www.martinimuse.com/vodka_brands_and_types.shtml|title=How Vodka is Made|publisher=Martini Muse|accessdate=February 18, 2012}} 146. ^{{cite journal |title=Soy Bean Soup is Pressed into Auto Parts |journal=Popular Mechanics |volume=64 |issue=4 |page=513 |date=April 1936 |url=https://books.google.com/books?id=lNsDAAAAMBAJ&pg=PA513 |issn=0032-4558}} 147. ^{{cite web|url=http://blogs.cancer.org/expertvoices/2012/08/02/the-bottom-line-on-soy-and-breast-cancer-risk/ |title=How Your Diet May Affect Your Risk of Breast Cancer |date=1 October 2018 |publisher=American Cancer Society |accessdate=16 March 2019}} 148. ^{{cite journal|pmid=25286183|pmc=4266039|year=2014|author1=Moses|first1=T|title=Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives|journal=Critical Reviews in Biochemistry and Molecular Biology|volume=49|issue=6|pages=439–62|last2=Papadopoulou|first2=K.K.|last3=Osbourn|first3=A|doi=10.3109/10409238.2014.953628}} 149. ^{{cite journal |vauthors=Song TT, Hendrich S, Murphy PA |title=Estrogenic activity of glycitein, a soy isoflavone |journal=Journal of Agricultural and Food Chemistry |volume=47 |issue=4 |pages=1607–10 |year=1999 |pmid=10564025 |doi=10.1021/jf981054j|url=http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1096&context=fshn_ag_pubs }} 150. ^1 2 {{cite journal |date=February 21, 2006|pages=1034–44 |doi=10.1161/CIRCULATIONAHA.106.171052 |title=Soy Protein, Isoflavones, and Cardiovascular Health: An American Heart Association Science Advisory for Professionals from the Nutrition Committee|last1=Sacks |first1=F.M. |journal=Circulation |volume=113 |issue=7 |pmid=16418439 |last2=Lichtenstein |first2=A. |last3=Van Horn |first3=L. |last4=Harris |first4=W. |last5=Kris-Etherton |first5=P. |last6=Winston |first6=M. |author7=American Heart Association Nutrition Committee}} 151. ^1 2 3 4 5 6 7 {{cite web | url=http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/soy-isoflavones | title=Soy isoflavones | publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis | date=2016 | accessdate=23 May 2016}} 152. ^{{cite journal | title=Isoflavones for hypercholesterolaemia in adults |vauthors=Qin Y, Niu K, Zeng Y, Liu P, Yi L, Zhang T, Zhang QY, Zhu JD, Mi MT | journal=Cochrane Database Syst Rev | year=2013 | volume=6 | issue=6 | pages=CD009518 | doi=10.1002/14651858.CD009518.pub2 | pmid=23744562}} 153. ^{{cite journal | url=http://www.efsa.europa.eu/en/efsajournal/pub/2264 | title=Scientific Opinion on the substantiation of health claims related to soy isoflavones and protection of DNA, proteins and lipids from oxidative damage (ID 1286, 4245), maintenance of normal blood LDL cholesterol concentrations (ID 1135, 1704a, 3093a), reduction of vasomotor symptoms associated with menopause (ID 1654, 1704b, 2140, 3093b, 3154, 3590), maintenance of normal skin tonicity (ID 1704a), contribution to normal hair growth (ID 1704a, 4254), "cardiovascular health" (ID 3587), treatment of prostate cancer (ID 3588) and "upper respiratory tract" (ID 3589) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 | author=Panel on Dietetic Products, Nutrition and Allergies, EFSA | journal=EFSA Journal | year=2011 | volume=9 | issue=7 | pages=2264 | doi=10.2903/j.efsa.2011.2264}} 154. ^1 2 {{Cite web |url=https://www.gpo.gov/fdsys/pkg/FR-1999-10-26/pdf/99-27693.pdf |title=Food Labeling: Health Claims; Soy Protein and Coronary Heart Disease; Docket No. 98P–0683 |publisher=US Food and Drug Administration; Federal Register, Vol. 64, No. 206 |location=Washington, DC |date=26 October 1999}} 155. ^{{cite journal |pages=276–82 |doi=10.1056/NEJM199508033330502 |title=Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids |year=1995 |last1=Anderson |first1=James W. |last2=Johnstone |first2=Bryan M. |last3=Cook-Newell |first3=Margaret E. |journal=New England Journal of Medicine|volume=333 |issue=5 |pmid=7596371}} 156. ^{{cite web|publisher=Consumer Affairs |title=Study Casts Doubt On Soy's Health Benefits |date=August 3, 2005 |url=http://www.consumeraffairs.com/news04/2005/soy_study.html |archiveurl=https://web.archive.org/web/20120308080707/http://www.consumeraffairs.com/news04/2005/soy_study.html |archivedate=March 8, 2012 |deadurl=yes |df= }} 157. ^{{cite web|url=http://westonaprice.org/soy/FDASoyHeartLetterFinal.pdf |title=RE: Docket No. 2007N0-464 |publisher=Weston A. Price Foundation |accessdate=February 19, 2012 |deadurl=yes |archiveurl=https://web.archive.org/web/20091010212652/http://www.westonaprice.org/soy/FDASoyHeartLetterFinal.pdf |archivedate=October 10, 2009 }} 158. ^{{cite journal |pmid=12620535 |date=March 2003 |last1=Messina |first1=M.J. |title=Potential Public Health Implications of the Hypocholesterolemic Effects of Soy Protein |volume=19 |issue=3 |pages=280–81 |journal=Nutrition (Burbank, CA)|doi=10.1016/S0899-9007(02)00995-4}} 159. ^{{cite journal |first1=David J.A. |last1=Jenkins |first2=Arash |last2=Mirrahimi |first3=Korbua |last3=Srichaikul |first4=Claire E. |last4=Berryman |first5=Li |last5=Wang |first6=Amanda |last6=Carleton |first7=Shahad |last7=Abdulnour |first8=John L. |last8=Sievenpiper |first9=Cyril W.C. |last9=Kendall | displayauthors=8 |title=Soy Protein Reduces Serum Cholesterol by Both Intrinsic and Food Displacement Mechanisms |journal=The Journal of Nutrition |url=http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=20943954 |date=December 2010 |volume=140 |issue=12 |pages=2302S–11S |doi=10.3945/jn.110.124958|pmid=20943954}} 160. ^{{cite journal |first1=Siyan |last1=Zhan |first2=Suzanne C. |last2=Ho |journal=American Journal of Clinical Nutrition|pmid=15699227 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=15699227 |date=December 2005 |title=Meta-Analysis of the Effects of Soy Protein Containing Isoflavones on the Lipid Profile |volume=81 |issue=2 |pages=397–408|doi=10.1093/ajcn.81.2.397 }} 161. ^{{cite journal |pmid=18534601 |date=September 2008 |last1=Harland |first1=J.I. |last2=Haffner |first2=T.A. |title=Systematic Review, Meta-analysis and Regression of Randomised Controlled Trials Reporting an Association Between an Intake of Circa 25 g Soya Protein Per Day and Blood Cholesterol |volume=200 |issue=1 |pages=13–27 |doi=10.1016/j.atherosclerosis.2008.04.006 |journal=Atherosclerosis}} 162. ^{{cite journal |pmid=16923451 |date=September 2006 |last1=Reynolds |first1=K. |last2=Chin |first2=A. |last3=Lees |first3=K.A. |last4=Nguyen |first4=A. |last5=Bujnowski |first5=D. |last6=He |first6=J. |title=A Meta-analysis of the Effect of Soy Protein Supplementation on Serum Lipids |volume=98 |issue=5 |pages=633–40 |doi=10.1016/j.amjcard.2006.03.042 |journal=The American Journal of Cardiology}} 163. ^{{cite journal |pages=1127–1138 |doi=10.1007/s11745-010-3487-z |title=Postprandial Lipemia Detects the Effect of Soy Protein on Cardiovascular Disease Risk Compared with the Fasting Lipid Profile |date=December 2010 |last1=Santo |first1=Antonio S. |last2=Santo |first2=Ariana M. |last3=Browne |first3=Richard W. |last4=Burton |first4=Harold |last5=Leddy |first5=John J. |last6=Horvath |first6=Steven M. |last7=Horvath |first7=Peter J. |journal=Lipids|volume=45 |issue=12 |pmid=20981505}} 164. ^{{cite journal | last1 = Vucenik | first1 = Ivana | last2 = Shamsuddin | first2 = AbulKalam M. | title = Cancer Inhibition by Inositol Hexaphosphate (IP6) and Inositol: From Laboratory to Clinic |journal=The Journal of Nutrition | volume = 133 | issue = 11 | pages = 3778S–84S | date = November 2003 | url = http://jn.nutrition.org/cgi/reprint/133/11/3778S | pmid = 14608114| doi = 10.1093/jn/133.11.3778S }} 165. ^{{cite journal | last1 = Yoon | first1 = Jane H. | last2 = Thompson | first2 = Lilian U. | last3 = Jenkins | first3 = David J.A. | title = The Effect of Phytic Acid on In Vitro Rate of Starch Digestibility and Blood Glucose Response | journal = American Journal of Clinical Nutrition| volume = 38 | issue = 6 | pages = 835–42 | date = December 1983 | url = http://www.ajcn.org/cgi/reprint/38/6/835 | pmid = 6650445| doi = 10.1093/ajcn/38.6.835 }} 166. ^{{cite journal | last1 = Sudheer | first1 = Kumar M. | last2 = Sridhar | first2 = Reddy B. | last3 = Kiran | first3 = Babu S. | last4 = Bhilegaonkar | first4 = P.M. | last5 = Shirwaikar | first5 = A. | last6 = Unnikrishnan | first6 = M.K.| title = Antiinflammatory and Antiulcer Activities of Phytic Acid in Rats | journal = Indian Journal of Experimental Biology| volume = 42 | issue = 2 | pages = 179–85 | date = February 2004 | pmid = 15282951 }} 167. ^{{cite book | chapter = Phytates | title = Toxicants Occurring Naturally in Foods | author = Committee on Food Protection, Food and Nutrition Board, National Research Council | publisher = National Academy of Sciences |location=Washington, DC| year = 1973 | isbn = 978-0-309-02117-3 | pages = 363–71 | chapter-url = https://books.google.com/?id=lIsrAAAAYAAJ&pg=PA363}} 168. ^{{cite journal |last = Cantani | first = A. |author2=Lucenti P. | date = August 1997 | title = Natural History of Soy Allergy and/or Intolerance in Children, and Clinical Use of Soy-protein Formulas | journal = Pediatric Journal of Allergy and Clinical Immunology| volume = 8 | issue = 2 | pages = 59–74 | doi = 10.1111/j.1399-3038.1997.tb00146.x | pmid = 9617775 }} 169. ^{{cite journal | last = Cordle | first = C.T. | date = May 2004 | title = Soy Protein Allergy: Incidence and Relative Severity | journal = Journal of Nutrition| volume = 134 | issue = 5 | pages = 1213S–19S | pmid = 15113974 | doi = 10.1093/jn/134.5.1213S }} 170. ^{{cite journal | last = Sampson | first = H.A. | date = May 1999 | title = Food Allergy, Part 1: Immunopathogenesis and Clinical Disorders | journal = The Journal of Allergy and Clinical Immunology| volume = 103 | issue = 5 | pages = 717–28 | doi = 10.1016/S0091-6749(99)70411-2 | pmid = 10329801 }} 171. ^{{cite journal |pages=613–18 |doi=10.1042/CS20000212 |title=Effect of a Phytoestrogen Food Supplement on Reproductive Health in Normal Males |date=June 2001 |last1=Mitchell |first1=Julie H. |last2=Cawood |first2=Elizabeth |last3=Kinniburgh |first3=David |last4=Provan |first4=Anne |last5=Collins |first5=Andrew R. |last6=Irvine |first6=D. Stewart |journal=Clinical Science |volume=100 |issue=6 |pmid=11352776}} 172. ^{{ cite journal | last1 = Oseni | first1 = T | last2 = Patel | first2 = R | last3 = Pyle | first3 = J | last4 = Jordan | first4 = VC | year = 2008 | title = Selective Estrogen Receptor Modulators and Phytoestrogens. | url = | journal = Planta Med | volume = 74 | issue = 13 | pages = 1656–65 | doi = 10.1055/s-0028-1088304 | pmid = 18843590 | pmc = 2587438 }} 173. ^{{cite journal |pmid=10702603 |date=March 2000 |last1=Adlercreutz |first1=H. |last2=Mazur |first2=W. |last3=Bartels |first3=P. |last4=Elomaa |first4=V. |last5=Watanabe |first5=S. |last6=Wähälä |first6=K. |last7=Landström |first7=M. |last8=Lundin |first8=E. |last9=Bergh |first9=A. | displayauthors=8 |title=Phytoestrogens and Prostate Disease |volume=130 |issue=3 |pages=658S–59S |journal=The Journal of Nutrition|doi=10.1093/jn/130.3.658S }} 174. ^{{cite journal |pmid=11823590 |date=February 2002 |last1=De Kleijn |first1=M.J. |last2=Van Der Schouw |first2=Y.T. |last3=Wilson |first3=P.W. |last4=Grobbee |first4=D.E. |last5=Jacques |first5=P.F. |title=Dietary Intake of Phytoestrogens is Associated With a Favorable Metabolic Cardiovascular Risk Profile in Postmenopausal U.S. Women: The Framingham Study |volume=132 |issue=2 |pages=276–82 |journal=The Journal of Nutrition|doi=10.1093/jn/132.2.276 }} 175. ^{{cite journal |pages=S31–S38 |doi=10.1079/BJN2002794 |pmid=12725654 |title=Phyto-oestrogen Database of Foods and Average Intake in Finland |date=June 2003 |last1=Valsta |first1=L.M. |last2=Kilkkinen |first2=A. |last3=Mazur |first3=W. |last4=Nurmi |first4=T. |last5=Lampi |first5=A-M. |last6=Ovaskainen |first6=M-L. |last7=Korhonen |first7=T. |last8=Adlercreutz |first8=H. |last9=Pietinen |first9=P. | displayauthors=8 |journal=British Journal of Nutrition|volume=89 |issue=5}} 176. ^{{cite journal |pages=184–201 |doi=10.1207/s15327914nc5402_5 |title=Phytoestrogen Content of Foods Consumed in Canada, Including Isoflavones, Lignans, and Coumestan |year=2006 |last1=Thompson |first1=Lilian U. |last2=Boucher |first2=Beatrice A. |last3=Liu |first3=Zhen |last4=Cotterchio |first4=Michelle |last5=Kreiger |first5=Nancy |journal=Nutrition and Cancer|volume=54 |issue=2 |pmid=16898863}} 177. ^Napier, India D., et al. "Testicular Development in Male Rats Is Sensitive to a Soy-Based Diet in the Neonatal Period." Biology of reproduction (2014): biolreprod-113. 178. ^{{cite journal |pages=1118–21 |doi=10.1345/aph.10257 |title=Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth |date=September 2001 |last1=De Lemos |first1=Mário L |journal=Annals of Pharmacotherapy |volume=35|issue=9 |pmid=11573864}} 179. ^{{cite journal |pages=1275–84 |doi=10.1093/jnci/djj356 |title=Addressing the Soy and Breast Cancer Relationship: Review, Commentary, and Workshop Proceedings |date=September 2006 |last1=Messina |first1=M. |last2=McCaskill-Stevens |first2=W. |last3=Lampe |first3=J.W. |journal=JNCI Journal of the National Cancer Institute|volume=98 |issue=18 |pmid=16985246}} 180. ^{{cite journal |pages=1637–43 |doi=10.1002/ijc.23394 |title=Do Both Heterocyclic Amines and Omega-6 Polyunsaturated Fatty Acids Contribute to the Incidence of Breast Cancer in Postmenopausal Women of the Malmö Diet and Cancer Cohort? |date=October 2008 |last1=Sonestedt |first1=Emily |last2=Ericson |first2=Ulrika |last3=Gullberg |first3=Bo |last4=Skog |first4=Kerstin |last5=Olsson |first5=Håkan |last6=Wirfält |first6=Elisabet |journal=International Journal of Cancer|volume=123 |issue=7 |pmid=18636564}} 181. ^{{cite journal |pages=1088–95 |doi=10.1093/jnci/93.14.1088 |title=Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: A Prospective Italian Study |date=July 2001 |last1=Pala |first1=V. |journal=Journal of the National Cancer Institute|volume=93 |issue=14 |pmid=11459870 |last2=Krogh |first2=V. |last3=Muti |first3=P. |last4=Chajès |first4=V. |last5=Riboli |first5=E. |last6=Micheli |first6=A. |last7=Saadatian |first7=M. |last8=Sieri |first8=S. |last9=Berrino |first9=F.| displayauthors=8 }} 182. ^{{cite journal |pages=315–323 |doi=10.1007/s10549-010-1270-8 |title=Soy Isoflavones Consumption and Risk of Breast Cancer Incidence or Recurrence: A Meta-analysis of Prospective Studies |date=January 2011 |last1=Dong |first1=Jia-Yi |last2=Qin |first2=Li-Qiang |journal=Breast Cancer Research and Treatment |volume=125 |issue=2 |pmid=21113655}} 183. ^{{cite journal |pages=997–1007 |doi=10.1016/j.fertnstert.2009.04.038 |title=Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: Results of a meta-analysis |year=2010 |last1=Hamilton-Reeves |first1=Jill M. |last2=Vazquez |first2=Gabriela |last3=Duval |first3=Sue J. |last4=Phipps |first4=William R. |last5=Kurzer |first5=Mindy S. |last6=Messina |first6=Mark J. |journal=Fertility and Sterility |volume=94 |issue=3 |pmid=19524224}} 184. ^{{cite journal |pages=2095–2104 |doi=10.1016/j.fertnstert.2010.03.002 |title=Soybean isoflavone exposure does not have feminizing effects on men: A critical examination of the clinical evidence |year=2010 |last1=Messina |first1=Mark |journal=Fertility and Sterility |volume=93 |issue=7 |pmid=20378106}} 185. ^{{cite journal |first1=Lin |last1=Yan |first2=Edward L |last2=Spitznagel |title=Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis |journal=The American Journal of Clinical Nutrition |pmid=19211820 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=19211820 |doi=10.3945/ajcn.2008.27029 |year=2009 |volume=89 |issue=4 |pages=1155–63}} 186. ^{{cite journal | last=van Die | first=MD | last2=Bone | first2=KM | last3=Williams | first3=SG | last4=Pirotta | first4=MV | title=Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. | journal=BJU International | volume=113 | issue=5b | year=2014 | issn=1464-4096 | pmid=24053483 | doi=10.1111/bju.12435 | pages=E119–30|url=https://onlinelibrary.wiley.com/doi/full/10.1111/bju.12435}} 187. ^{{cite journal|author2=Burguete M.C.|author3=Torregrosa G.|author4=Pérez-Asensio F.J.|author5=Castelló-Ruiz M.|author6=Salom J.B.|author7=Gil J.V.|author8=Alborch E.|title=Dietary Phytoestrogens Improve Stroke Outcome After Transient Focal Cerebral Ischemia in Rats|journal=European Journal of Neuroscience|volume=23|issue=3|pages=703–10|date=February 2006|pmid=16487152|doi=10.1111/j.1460-9568.2006.04599.x|author=Burguete MC, Torregrosa G, Pérez-Asensio FJ|display-authors=etal}} 188. ^{{cite journal |pages=135–38 |doi=10.1016/S0304-3940(02)01391-5 |title=Soya Phytoestrogens Change Cortical and Hippocampal Expression of BDNF mRNA in Male Rats |date=February 2003 |last1=File |first1=Sandra E. |last2=Hartley |first2=David E. |last3=Alom |first3=Nazmul |last4=Rattray |first4=Marcus |journal=Neuroscience Letters|volume=338 |issue=2 |pmid=12566171}} 189. ^{{cite journal |first1=Lon R. |last1=White |first2=Webster |last2=Petrovitch |last3=Ross |first4=Kamal |last4=Masaki |first5=John |last5=Hardman |first6=James |last6=Nelson |first7=Daron |last7=Davis |first8=William |last8=Markesbery |title=Brain Aging and Midlife Tofu Consumption |journal=Journal of the American College of Nutrition|pmid=10763906 |url=http://www.jacn.org/cgi/pmidlookup?view=long&pmid=10763906 |archive-url=https://archive.is/20130415062733/http://www.jacn.org/cgi/pmidlookup?view=long&pmid=10763906 |dead-url=yes |archive-date=2013-04-15 |date=April 2000 |first3=GW |volume=19 |issue=2 |pages=242–55 |doi=10.1080/07315724.2000.10718923}} 190. ^{{cite journal |pmid=11522120|year=2001 |last1=Sirtori |first1=C.R. |title=Risks and Benefits of Soy Phytoestrogens in Cardiovascular Diseases, Cancer, Climacteric Symptoms and Osteoporosis |volume=24 |issue=9 |pages=665–82 |journal=Drug Safety|doi=10.2165/00002018-200124090-00003}} 191. ^{{cite journal |pages=50–57 |doi=10.1159/000141484 |title=High Tofu Intake is Associated with Worse Memory in Elderly Indonesian Men and Women |year=2008 |last1=Hogervorst |first1=E. |last2=Sadjimim |first2=T. |last3=Yesufu |first3=A. |last4=Kreager |first4=P. |last5=Rahardjo |first5=T.B. |journal=Dementia and Geriatric Cognitive Disorders |volume=26|issue=1|pmid=18583909}} 192. ^[https://web.archive.org/web/20150321201407/http://www.soyfoods.org/wp-content/uploads/CSPI-article-Soy-Oh-Soy.pdf Soy Oh Soy! Is it really bad for you?] by David Schardt 193. ^{{cite journal |pages=52–59 |doi=10.1093/toxsci/55.1.52 |title=Gabapentin-Induced Mitogenic Activity in Rat Pancreatic Acinar Cells |date=May 2000 |last1=Dethloff |first1=L. |journal=Toxicological Sciences|volume=55|issue=1 |pmid=10788559 |last2=Barr |first2=B. |last3=Bestervelt |first3=L. |last4=Bulera |first4=S. |last5=Sigler |first5=R. |last6=Lagattuta |first6=M. |last7=De La Iglesia |first7=F.}} 194. ^{{cite journal |pmid=3815341 |date=March 1987 |last1=Roebuck |first1=B.D. |last2=Kaplita |first2=P.V. |last3=Edwards |first3=B.R. |last4=Praissman |first4=M. |title=Effects of Dietary Fats and Soybean Protein on Azaserine-induced Pancreatic Carcinogenesis and Plasma Cholecystokinin in the Rat |volume=47 |issue=5 |pages=1333–38 |journal=Cancer Research}} 195. ^{{cite book |pmid=3799291 |year=1986 |last1=Roebuck |first1=B.D. |title=Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods |volume=199 |pages=91–107 |publisher=Kluwer Academic |doi=10.1007/978-1-4757-0022-0_5 |series=Advances in Experimental Medicine and Biology |isbn=978-1-4757-0024-4|chapter=Enhancement of Pancreatic Carcinogenesis by Raw Soy Protein Isolate: Quantitative Rat Model and Nutritional Considerations }} 196. ^{{cite journal |pages=326–336 |doi=10.1016/j.taap.2006.11.007 |title=Pancreatic Cancer: Pathogenesis, Prevention and Treatment |date=November 2007 |last1=Sarkar |first1=F. |last2=Banerjee |first2=S. |last3=Li |first3=Y. |journal=Toxicology and Applied Pharmacology |volume=224 |issue=3 |pmid=17174370 |pmc=2094388}} 197. ^{{cite journal|pmid=16571087|year=2006|author1=Messina|first1=M|title=Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: A review of the relevant literature|journal=Thyroid|volume=16|issue=3|pages=249–58|last2=Redmond|first2=G|doi=10.1089/thy.2006.16.249}} 198. ^{{cite journal|url=https://www.efsa.europa.eu/en/efsajournal/pub/4246|journal=EFSA Journal|year=2015|volume=13|issue=10|page=4246|doi=10.2903/j.efsa.2015.4246|title=Risk assessment for peri- and postmenopausal women taking food supplements containing isolated isoflavones}} 199. ^{{cite web | title = Soy | website = | publisher = US National Institutes of Health|date=2011-05-05|url=https://www.nlm.nih.gov/medlineplus/ency/article/007204.htm|doi=|accessdate = 2012-10-10}} 200. ^{{cite journal |vauthors=Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G | title = Purine-rich foods, dairy and protein intake, and the risk of gout in men | journal = N. Engl. J. Med. | volume = 350 | issue = 11 | pages = 1093–103 |date=March 2004 | pmid = 15014182 | doi = 10.1056/NEJMoa035700 }} 201. ^{{cite journal | author = Weaver AL | title = Epidemiology of gout | journal = Cleve Clin J Med | volume = 75 Suppl 5 | issue = | pages = S9–12 |date=July 2008 | pmid = 18819329 | doi =10.3949/ccjm.75.Suppl_5.S9 | url = }} 202. ^{{cite web|url=http://www.jse.co.za/Markets/Commodity-Derivatives-Market.aspx|title=SAFEX Commodity Derivatives Market|publisher=Johannesburg Stock Exchange|accessdate=February 19, 2012}} 203. ^{{cite web|url=http://www.dce.com.cn|title=交易所动态|publisher=Dalian Commodity Exchange|accessdate=February 19, 2012}} 204. ^{{cite web|url=http://www.kanex.or.jp/english/index-eng.htm|title=Exchange Introduction|publisher=Dansai Commodities Exchange|accessdate=February 19, 2012|deadurl=yes|archiveurl=https://web.archive.org/web/20120218072716/http://kanex.or.jp/english/index-eng.htm|archivedate=February 18, 2012|df=mdy-all}} 205. ^{{cite web|url=http://www.tge.or.jp/english/index.shtml|title=Today's Market (Deferred)|publisher=Tokyo Grain Exchange|accessdate=February 19, 2012|deadurl=yes|archiveurl=https://web.archive.org/web/20120220091625/http://www.tge.or.jp/english/index.shtml|archivedate=February 20, 2012|df=mdy-all}} External links{{Wikiquote}}{{Commonscat|Glycine max|Soybean}}{{Americana Poster|Soy bean|year=1920}}{{Soy}}{{Agriculture country lists}}{{Vegetarianism}}{{Bioenergy}}{{Nuts}}{{Taxonbar|from=Q11006}}{{Authority control}} 14 : Soybeans|Chinese cuisine|Crops|Crops originating from China|Edible legumes|Energy crops|Nitrogen-fixing crops|Faboideae|Fiber plants|Fodder|Japanese cuisine|Korean cuisine|Phaseoleae|Soy products |
||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。