请输入您要查询的百科知识:

 

词条 Necklace ring
释义

  1. Definition

  2. See also

  3. References

In mathematics, the necklace ring is a ring introduced by {{harvs|txt|last=Metropolis|last2=Rota|year=1983}} to elucidated the multiplicative properties of necklace polynomials.

Definition

If A is a commutative ring then the necklace ring over A consists of all infinite sequences (a1,a2,...) of elements of A. Addition in the necklace ring is given by pointwise addition of sequences. Multiplication is given by a sort of arithmetic convolution: the product of (a1,a2,...) and (b1,b2,...) has components

where [i,j] is the least common multiple of i and j, and (i,j) is their greatest common divisor.

This ring structure is isomorphic to the multiplication of formal power series written in "necklace coordinates": that is, identifying an integer sequence (a1,a2,...) with the power series .

See also

  • Witt vector

References

  • {{cite book|mr=2553661 | last1=Hazewinkel | first1=Michiel | author-link = Michiel Hazewinkel |chapter=Witt vectors I |title= Handbook of Algebra |volume=6 |pages=319–472 |publisher=Elsevier/North-Holland |year= 2009 |arxiv=0804.3888 |isbn=978-0-444-53257-2|bibcode=2008arXiv0804.3888H }}
  • {{Cite journal |last1=Metropolis |first1=N. |author1-link = Nicholas Metropolis |last2=Rota |first2=Gian-Carlo |author2-link=Gian-Carlo Rota |title=Witt vectors and the algebra of necklaces |doi=10.1016/0001-8708(83)90035-X |mr=723197 |year=1983 |journal=Advances in Mathematics |volume=50 |issue=2 |pages=95–125 | url = https://www.sciencedirect.com/science/article/pii/000187088390035X/pdf?md5=3cfd1a39f5235b827cb18f8a3e99ccc2&pid=1-s2.0-000187088390035X-main.pdf}}

1 : Ring theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 10:28:06