词条 | Order-2 apeirogonal tiling |
释义 |
In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedron[1] is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol {∞, 2}. Two apeirogons, joined along all their edges, can completely fill the entire plane as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°. Related tilings and polyhedraThe apeirogonal tiling is the arithmetic limit of the family of dihedra {p, 2}, as p tends to infinity, thereby turning the dihedron into a Euclidean tiling. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the apeirogonal antiprism. {{Order-2 Apeirogonal Tilings}}See also
Notes1. ^Conway (2008), p. 263 References{{reflist}}
External links
6 : Apeirogonal tilings|Euclidean tilings|Isogonal tilings|Isohedral tilings|Order-2 tilings|Regular tilings |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。