词条 | Automata theory | ||||||||||||||||||||
释义 |
The figure at right illustrates a finite-state machine, which belongs to a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the current state and the recent symbol as its inputs. Automata theory is closely related to formal language theory. An automaton is a finite representation of a formal language that may be an infinite set. Automata are often classified by the class of formal languages they can recognize, typically illustrated by the Chomsky hierarchy, which describes the relations between various languages and kinds of formalized logic. Automata play a major role in theory of computation, compiler construction, artificial intelligence, parsing and formal verification. AutomataFollowing is an introductory definition of one type of automaton, which attempts to help one grasp the essential concepts involved in automata theory/theories. Very informal descriptionAn automaton is a construct made of states designed to determine if the input should be accepted or rejected. It looks a lot like a basic board game where each space on the board represents a state. Each state has information about what to do when an input is received by the machine (again, rather like what to do when you land on the Jail spot in a popular board game). As the machine receives a new input, it looks at the state and picks a new spot based on the information on what to do when it receives that input at that state. When there are no more inputs, the automaton stops and the space it is on when it completes determines whether the automaton accepts or rejects that particular set of inputs. Informal descriptionAn automaton runs when it is given some sequence of inputs in discrete (individual) time steps or steps. An automaton processes one input picked from a set of symbols or letters, which is called an alphabet. The symbols received by the automaton as input at any step are a finite sequence of symbols called words. An automaton has a finite set of states. At each moment during a run of the automaton, the automaton is in one of its states. When the automaton receives new input it moves to another state (or transitions) based on a function that takes the current state and symbol as parameters. This function is called the transition function. The automaton reads the symbols of the input word one after another and transitions from state to state according to the transition function until the word is read completely. Once the input word has been read, the automaton is said to have stopped. The state at which the automaton stops is called the final state. Depending on the final state, it's said that the automaton either accepts or rejects an input word. There is a subset of states of the automaton, which is defined as the set of accepting states. If the final state is an accepting state, then the automaton accepts the word. Otherwise, the word is rejected. The set of all the words accepted by an automaton is called the language recognized by the automaton. In short, an automaton is a mathematical object that takes a word as input and decides whether to accept it or reject it. Since all computational problems are reducible into the accept/reject question on inputs, (all problem instances can be represented in a finite length of symbols){{Citation needed|date=May 2012}}, automata theory plays a crucial role in computational theory. Formal definition
definition of finite state automataA deterministic finite automaton is represented formally by a 5-tuple0,F>, where:
An automaton reads a finite string of symbols a1,a2,...., an , where ai ∈ Σ, which is called an input word. The set of all words is denoted by Σ*.
A sequence of states q0,q1,q2,...., qn, where qi ∈ Q such that q0 is the start state and qi = δ(qi-1,ai) for 0 < i ≤ n, is a run of the automaton on an input word w = a1,a2,...., an ∈ Σ*. In other words, at first the automaton is at the start state q0, and then the automaton reads symbols of the input word in sequence. When the automaton reads symbol ai it jumps to state qi = δ(qi-1,ai). qn is said to be the final state of the run.
A word w ∈ Σ* is accepted by the automaton if qn ∈ F.
An automaton can recognize a formal language. The language L ⊆ Σ* recognized by an automaton is the set of all the words that are accepted by the automaton.
The recognizable languages are the set of languages that are recognized by some automaton. For the above definition of automata the recognizable languages are regular languages. For different definitions of automata, the recognizable languages are different. Variant definitions of automataAutomata are defined to study useful machines under mathematical formalism. So, the definition of an automaton is open to variations according to the "real world machine", which we want to model using the automaton. People have studied many variations of automata. The most standard variant, which is described above, is called a deterministic finite automaton. The following are some popular variations in the definition of different components of automata.
Different combinations of the above variations produce many classes of automaton. Automata theory is a subject matter that studies properties of various types of automata. For example, the following questions are studied about a given type of automata.
Automata theory also studies the existence or nonexistence of any effective algorithms to solve problems similar to the following list:
Classes of automataThe following is an incomplete list of types of automata.
Discrete, continuous, and hybrid automataNormally automata theory describes the states of abstract machines but there are analog automata or continuous automata or hybrid discrete-continuous automata, which use analog data, continuous time, or both. Hierarchy in terms of powersThe following is an incomplete hierarchy in terms of powers of different types of virtual machines. The hierarchy reflects the nested categories of languages the machines are able to accept.[1]
ApplicationsEach model in automata theory plays important roles in several applied areas. Finite automata are used in text processing, compilers, and hardware design. Context-free grammar (CFGs) are used in programming languages and artificial intelligence. Originally, CFGs were used in the study of the human languages. Cellular automata are used in the field of biology, the most common example being John Conway's Game of Life. Some other examples which could be explained using automata theory in biology include mollusk and pine cones growth and pigmentation patterns. Going further, a theory suggesting that the whole universe is computed by some sort of a discrete automaton, is advocated by some scientists. The idea originated in the work of Konrad Zuse, and was popularized in America by Edward Fredkin. Automata also appear in the theory of finite fields: the set of irreducible polynomials which can be written as composition of degree two polynomials is in fact a regular language.[2] Automata simulatorsAutomata simulators are pedagogical tools used to teach, learn and research automata theory. An automata simulator takes as input the description of an automaton and then simulates its working for an arbitrary input string. The description of the automaton can be entered in several ways. An automaton can be defined in a symbolic language or its specification may be entered in a predesigned form or its transition diagram may be drawn by clicking and dragging the mouse. Well known automata simulators include Turing's World, JFLAP, VAS, TAGS and SimStudio.[3] Connection to category theoryOne can define several distinct categories of automata[4] following the automata classification into different types described in the previous section. The mathematical category of deterministic automata, sequential machines or sequential automata, and Turing machines with automata homomorphisms defining the arrows between automata is a Cartesian closed category,[5][6] it has both categorical limits and colimits. An automata homomorphism maps a quintuple of an automaton Ai onto the quintuple of another automaton Aj.[7] Automata homomorphisms can also be considered as automata transformations or as semigroup homomorphisms, when the state space, S, of the automaton is defined as a semigroup Sg. Monoids are also considered as a suitable setting for automata in monoidal categories.[8][9][10]
One could also define a variable automaton, in the sense of Norbert Wiener in his book on The Human Use of Human Beings via the endomorphisms . Then, one can show that such variable automata homomorphisms form a mathematical group. In the case of non-deterministic, or other complex kinds of automata, the latter set of endomorphisms may become, however, a variable automaton groupoid. Therefore, in the most general case, categories of variable automata of any kind are categories of groupoids or groupoid categories. Moreover, the category of reversible automata is then a 2-category, and also a subcategory of the 2-category of groupoids, or the groupoid category. See also
References1. ^{{cite book|last=Yan|first=Song Y.|title=An Introduction to Formal Languages and Machine Computation|year=1998|publisher=World Scientific Publishing Co. Pte. Ltd.|location=Singapore|pages=155–156|url=https://books.google.com/books?id=ySOwQgAACAAJ|isbn=9789810234225}} 2. ^{{Citation | last = Ferraguti | first = A. | last2 = Micheli | first2 = G. | last3 = Schnyder | first3 = R. | title = Irreducible compositions of degree two polynomials over finite fields have regular structure | volume = 69 | issue = 3 | pages = 1089–1099 | series = The Quarterly Journal of Mathematics | publisher = Oxford University Press | doi = 10.1093/qmath/hay015 | year = 2018 | arxiv = 1701.06040 }} 3. ^Chakraborty, P., Saxena, P. C., Katti, C. P. 2011. Fifty Years of Automata Simulation: A Review. ACM Inroads, 2(4):59–70. http://dl.acm.org/citation.cfm?id=2038893&dl=ACM&coll=DL&CFID=65021406&CFTOKEN=86634854 4. ^Jirí Adámek and Vera Trnková. 1990. Automata and Algebras in Categories. Kluwer Academic Publishers:Dordrecht and Prague 5. ^S. Mac Lane, Categories for the Working Mathematician, Springer, New York (1971) 6. ^Cartesian closed category {{webarchive |url=https://web.archive.org/web/20111116215852/http://planetmath.org/encyclopedia/CartesianClosedCategory.html |date=November 16, 2011 }} 7. ^The Category of Automata {{webarchive |url=https://web.archive.org/web/20110915074653/http://planetmath.org/encyclopedia/SequentialMachine3.html |date=September 15, 2011 }} 8. ^http://www.math.cornell.edu/~worthing/asl2010.pdf James Worthington.2010.Determinizing, Forgetting, and Automata in Monoidal Categories. ASL North American Annual Meeting, March 17, 2010 9. ^Aguiar, M. and Mahajan, S.2010. "Monoidal Functors, Species, and Hopf Algebras". 10. ^Meseguer, J., Montanari, U.: 1990 Petri nets are monoids. Information and Computation 88:105–155 Further reading
External links
1 : Automata (computation) |
||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。