请输入您要查询的百科知识:

 

词条 Stickelberger's theorem
释义

  1. The Stickelberger element and the Stickelberger ideal

     Examples 

  2. Statement of the theorem

  3. See also

  4. Notes

  5. References

  6. External links

In mathematics, Stickelberger's theorem is a result of algebraic number theory, which gives some information about the Galois module structure of class groups of cyclotomic fields. A special case was first proven by Ernst Kummer (Kummer|1847}}|1847) while the general result is due to Ludwig Stickelberger (Stickelberger|1890}}|1890).[1]

The Stickelberger element and the Stickelberger ideal

Let {{mvar|Km}} denote the {{mvar|m}}th cyclotomic field, i.e. the extension of the rational numbers obtained by adjoining the {{mvar|m}}th roots of unity to {{math|}} (where {{math|m ≥ 2}} is an integer). It is a Galois extension of {{math|}} with Galois group {{mvar|Gm}} isomorphic to the multiplicative group of integers modulo {{mvar|m}} {{math|(/m)×}}. The Stickelberger element (of level {{mvar|m}} or of {{mvar|Km}}) is an element in the group ring {{math|[Gm]}} and the Stickelberger ideal (of level {{mvar|m}} or of {{mvar|Km}}) is an ideal in the group ring {{math|[Gm]}}. They are defined as follows. Let {{mvar|ζm}} denote a primitive {{mvar|m}}th root of unity. The isomorphism from {{math|(/m)×}} to {{mvar|Gm}} is given by sending {{mvar|a}} to {{mvar|σa}} defined by the relation

.

The Stickelberger element of level {{mvar|m}} is defined as

The Stickelberger ideal of level {{mvar|m}}, denoted {{math|I(Km)}}, is the set of integral multiples of {{math|θ(Km)}} which have integral coefficients, i.e.

More generally, if {{mvar|F}} be any Abelian number field whose Galois group over {{math|}} is denoted {{mvar|GF}}, then the Stickelberger element of {{mvar|F}} and the Stickelberger ideal of {{mvar|F}} can be defined. By the Kronecker–Weber theorem there is an integer {{mvar|m}} such that {{mvar|F}} is contained in {{mvar|Km}}. Fix the least such {{mvar|m}} (this is the (finite part of the) conductor of {{mvar|F}} over {{math|}}). There is a natural group homomorphism {{math|GmGF}} given by restriction, i.e. if {{math|σGm}}, its image in {{mvar|GF}} is its restriction to {{mvar|F}} denoted {{math|resmσ}}. The Stickelberger element of {{mvar|F}} is then defined as

The Stickelberger ideal of {{mvar|F}}, denoted {{math|I(F)}}, is defined as in the case of {{mvar|Km}}, i.e.

In the special case where {{math|F {{=}} Km}}, the Stickelberger ideal {{math|I(Km)}} is generated by {{math|(aσa)θ(Km)}} as {{mvar|a}} varies over {{math|/m}}. This not true for general F.[2]

Examples

If {{mvar|F}} is a totally real field of conductor {{mvar|m}}, then[3]

where {{mvar|φ}} is the Euler totient function and {{math|[F : ]}} is the degree of {{mvar|F}} over .

Statement of the theorem

Stickelberger's Theorem[4]

Let {{mvar|F}} be an abelian number field. Then, the Stickelberger ideal of {{mvar|F}} annihilates the class group of {{mvar|F}}.

Note that {{math|θ(F)}} itself need not be an annihilator, but any multiple of it in {{math|[GF]}} is.

Explicitly, the theorem is saying that if {{math|α ∈ [GF]}} is such that

and if {{mvar|J}} is any fractional ideal of {{mvar|F}}, then

is a principal ideal.

See also

  • Gross–Koblitz formula
  • Herbrand–Ribet theorem
  • Thaine's theorem

Notes

1. ^{{harvnb|Washington|1997|loc=Notes to chapter 6}}
2. ^{{harvnb|Washington|1997}}, Lemma 6.9 and the comments following it
3. ^{{harvnb|Washington|1997|loc=§6.2}}
4. ^{{harvnb|Washington|1997|loc=Theorem 6.10}}

References

  • {{cite book |last=Cohen |first=Henri |authorlink= Henri Cohen (number theorist) | year=2007 | title=Number Theory – Volume I: Tools and Diophantine Equations | isbn= 978-0-387-49922-2 | publisher=Springer-Verlag | series=Graduate Texts in Mathematics | volume=239| zbl=1119.11001 | pages=150–170 }}
  • Boas Erez, Darstellungen von Gruppen in der Algebraischen Zahlentheorie: eine Einführung
  • {{cite book | zbl=0376.12002 | last=Fröhlich | first=A. | author-link=Albrecht Fröhlich | chapter=Stickelberger without Gauss sums | pages=589–607 | title=Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975 | editor1-last=Fröhlich | editor1-first=A. | editor1-link=Albrecht Fröhlich | publisher=Academic Press | year=1977 | isbn=0-12-268960-7 }}
  • {{cite book | last1=Ireland | first1=Kenneth | last2=Rosen | first2=Michael | title=A Classical Introduction to Modern Number Theory | place=New York | edition=2nd | publisher=Springer-Verlag | series = Graduate Texts in Mathematics | volume=84 | year=1990 | isbn=978-1-4419-3094-1 | mr=1070716 | doi=10.1007/978-1-4757-2103-4}}
  • {{Citation

| last=Kummer
| first=Ernst
| author-link=Ernst Kummer
| title=Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren
| year=1847
| journal=Journal für die Reine und Angewandte Mathematik
| volume=35
| pages=327–367
| doi=10.1515/crll.1847.35.327
}}
  • {{Citation

| last=Stickelberger
| first=Ludwig
| author-link=Ludwig Stickelberger
| title=Ueber eine Verallgemeinerung der Kreistheilung
| url=http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=27547
| journal=Mathematische Annalen
| volume=37
| number=3
| year=1890
| pages=321–367
| mr=1510649 | jfm = 22.0100.01
| doi=10.1007/bf01721360
}}
  • {{Citation

| last=Washington
| first=Lawrence
| title=Introduction to Cyclotomic Fields
| edition=2
| publisher=Springer-Verlag
| location=Berlin, New York
| series=Graduate Texts in Mathematics
| isbn=978-0-387-94762-4
| mr=1421575
| year=1997
| volume=83
}}

External links

  • PlanetMath page

2 : Cyclotomic fields|Theorems in algebraic number theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 11:52:25