请输入您要查询的百科知识:

 

词条 Partial cyclic order
释义

  1. Definition

  2. Constructions

  3. Extensions

  4. Notes

  5. References

  6. Further reading

In mathematics, a partial cyclic order is a ternary relation that generalizes a cyclic order in the same way that a partial order generalizes a linear order.

Definition

{{sfn|Novák|1982}}

Constructions

Direct sum

Direct product

Power{{sfn|Novák|Novotný|1984a}}{{sfn|Novák|Novotný|1984b}}

Dedekind–MacNeille completion

Extensions

linear extension, Szpilrajn extension theoremstandard example

The relationship between partial and total cyclic orders is more complex than the relationship between partial and total linear orders. To begin with, not every partial cyclic order can be extended to a total cyclic order. An example is the following relation on the first thirteen letters of the alphabet: {acd, bde, cef, dfg, egh, fha, gac, hcb} ∪ {abi, cij, bjk, ikl, jlm, kma, lab, mbc} ∪ {hcm, bhm}. This relation is a partial cyclic order, but it cannot be extended with either abc or cba; either attempt would result in a contradiction.{{sfn|Megiddo|1976|pp=274–275}}

The above was a relatively mild example. One can also construct partial cyclic orders with higher-order obstructions such that, for example, any 15 triples can be added but the 16th cannot. In fact, cyclic ordering is NP-complete, since it solves 3SAT. This is in stark contrast with the recognition problem for linear orders, which can be solved in linear time.{{sfn|Megiddo|1976|pp=275–276}}{{sfn|Galil|Megiddo|1977|p=179}}

Notes

References

{{Refbegin}}
  • {{Citation |last=Galil |first=Zvi |authorlink=Zvi Galil|last2=Megiddo |first2=Nimrod|author2-link=Nimrod Megiddo |date=October 1977 |title=Cyclic ordering is NP-complete |journal=Theoretical Computer Science |volume=5 |issue=2 |pages=179–182 |doi=10.1016/0304-3975(77)90005-6 |url=http://theory.stanford.edu/~megiddo/pdf/cyc-npc.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Megiddo |first=Nimrod |authorlink=Nimrod Megiddo|date=March 1976 |title=Partial and complete cyclic orders |journal=Bulletin of the American Mathematical Society |volume=82 |issue=2 |pages=274–276 |doi=10.1090/S0002-9904-1976-14020-7 |url=http://www.ams.org/journals/bull/1976-82-02/S0002-9904-1976-14020-7/S0002-9904-1976-14020-7.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Novák |first=Vítězslav |year=1982 |title=Cyclically ordered sets |journal=Czechoslovak Mathematical Journal |volume=32 |issue=3 |pages=460–473 |hdl=10338.dmlcz/101821 |url=http://dml.cz/bitstream/handle/10338.dmlcz/101821/CzechMathJ_32-1982-3_12.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Novák |first=Vítězslav |last2=Novotný |first2=Miroslav |year=1984a |title=On a power of cyclically ordered sets |journal=Časopis pro pěstování matematiky |volume=109 |issue=4 |pages=421–424 |hdl=10338.dmlcz/118209 |url=http://dml.cz/bitstream/handle/10338.dmlcz/118209/CasPestMat_109-1984-4_7.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Novák |first=Vítězslav |last2=Novotný |first2=Miroslav |year=1984b |title=Universal cyclically ordered sets |journal=Czechoslovak Mathematical Journal |volume=35 |issue=1 |pages=158–161 |hdl=10338.dmlcz/102004 |url=http://dml.cz/bitstream/handle/10338.dmlcz/102004/CzechMathJ_35-1985-1_11.pdf |accessdate=30 April 2011}}
{{Refend}}

Further reading

{{Refbegin}}
  • {{Citation |last=Alles |first=Peter |last2=Nešetřil |first2=Jaroslav |last3=Poljak |first3=Svatopluck |year=1991 |title=Extendability, Dimensions, and Diagrams of Cyclic Orders |journal=SIAM Journal on Discrete Mathematics |volume=4 |issue=4 |pages=453–471 |doi=10.1137/0404041}}
  • {{Citation |last=Bandelt |first=Hans–Jürgen |last2=Chepoi |first2=Victor |last3=Eppstein |first3=David |author3-link=David Eppstein|year=2010 |title=Combinatorics and geometry of finite and infinite squaregraphs |journal=SIAM Journal on Discrete Mathematics |volume=24 |issue=4 |pages=1399–1440 |doi=10.1137/090760301 |url=http://epub.sub.uni-hamburg.de/epub/volltexte/2009/3280/pdf/0905.4537v1.pdf |accessdate=23 May 2011 |arxiv=0905.4537}}
  • {{Citation |last=Chajda |first=Ivan |last2=Novák |first2=Vítězslav |year=1985 |title=On extensions of cyclic orders |journal=Časopis pro pěstování matematiky |volume=110 |issue=2 |pages=116–121 |hdl=10338.dmlcz/108597 |url=http://dml.cz/bitstream/handle/10338.dmlcz/108597/CasPestMat_110-1985-2_2.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Fishburn |first=P. C. |authorlink=Peter C. Fishburn|last2=Woodall |first2=D. R. |date=June 1999 |title=Cycle Orders |journal=Order |volume=16 |issue=2 |pages=149–164 |doi=10.1023/A:1006381208272}}
  • {{Citation |last=Haar |first=Stefan |year=2001 |chapter=Cyclic and partial order models for concurrency |title=Geometry and Topology in Concurrency Theory GETCO ’01 |pages=51–62 |url=http://www.brics.dk/NS/01/7/BRICS-NS-01-7.pdf |accessdate=23 May 2011}}
  • {{Citation |last=Ille |first=Pierre |last2=Ruet |first2=Paul |date=30 April 2008 |title=Cyclic Extensions of Order Varieties |journal=Electronic Notes in Theoretical Computer Science |volume=212 |pages=119–132 |doi=10.1016/j.entcs.2008.04.057 |url=http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.2305 |accessdate=23 May 2011}}
  • {{Citation |last=Jakubík |first=Ján |year=1994 |title=On extended cyclic orders |journal=Czechoslovak Mathematical Journal |volume=44 |issue=4 |pages=661–675 |hdl=10338.dmlcz/128486 |url=http://dml.cz/bitstream/handle/10338.dmlcz/128486/CzechMathJ_44-1994-4_8.pdf |accessdate=30 April 2011}}
  • {{Citation |last=Melliès |first=Paul-André |year=2004 |chapter=A topological correctness criterion for non-commutative logic |editor=Thomas Ehrhard and Jean-Yves Girard and Paul Ruet and Philip Scott |title=Linear Logic in Computer Science |pages=283–323 |url=http://hal.archives-ouvertes.fr/docs/00/15/42/04/PDF/critere.pdf |accessdate=23 May 2011}}
  • {{Citation |last=Novák |first=Vítězslav |year=1984 |title=On some minimal problem |journal=Archivum Mathematicum |volume=20 |issue=2 |pages=95–99 |hdl=10338.dmlcz/107191 |zbl=0554.06003 |mr=784860 |url=http://dml.cz/bitstream/handle/10338.dmlcz/107191/ArchMath_020-1984-2_5.pdf |accessdate=23 May 2011}}
  • {{Citation |last=Stehr |first=Mark-Oliver |year=1998 |chapter=Thinking in Cycles |pages=205–225 |editor-first=Jörg |editor-last=Desel |editor2-first=Manuel |editor2-last=Silva |title=ICATPN '98 Proceedings of the 19th International Conference on Application and Theory of Petri Nets |series=Lecture Notes in Computer Science |volume=1420 |isbn=3-540-64677-9 |doi=10.1007/3-540-69108-1_12}}{{Refend}}
  • S. Haar.  Cyclic Ordering through Partial Orders.  Journal of Multiple-Valued Logic and Soft Computing 27(2-3), pages 209-228, 2016. 
  • http://www.lif.univ-mrs.fr/~lsantoca/TRECOLOCOCO/rencontre_Marseille/Stefan.pdf

2 : Order theory|Circles

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 17:21:00