请输入您要查询的百科知识:

 

词条 Peeling theorem
释义

  1. References

  2. External links

In general relativity, the peeling theorem describes the asymptotic behavior of the Weyl tensor as one goes to null infinity. Let be a null geodesic in a spacetime from a point p to null infinity, with affine parameter . Then the theorem states that, as tends to infinity:

where is the Weyl tensor, and we used the abstract index notation. Moreover, in the Petrov classification, is type N, is type III, is type II (or II-II) and is type I.

References

  • {{Citation

|last=Wald
|first=Robert M.
|title=General Relativity
|publisher=University of Chicago Press
|year=1984
|isbn=0-226-87033-2
}}

External links

  • [https://arxiv.org/abs/gr-qc/0505026]
  • [https://books.google.com/books?id=xIYpAQAAMAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y]
  • [https://books.google.com/books?id=YP0-AAAAIAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y]
  • [https://books.google.com/books?id=5xYvAAAAIAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y]
{{differential-geometry-stub}}{{relativity-stub}}

2 : General relativity|Theorems in mathematical physics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 23:42:00