释义 |
- See also
- References
In mathematics, a period domain is a parameter space for a polarized Hodge structure. They can often be represented as the quotient of a Lie group by a compact subgroup. See alsoReferences- {{Citation | last1=Carlson | first1=James | last2=Müller-Stach | first2=Stefan | last3=Peters | first3=Chris | title=Period mappings and period domains | url=http://www.cambridge.org/gb/knowledge/isbn/item1169818/?site_locale=en_GB | publisher=Cambridge University Press | series=Cambridge Studies in Advanced Mathematics | isbn=978-0-521-81466-9 |mr=2012297 | year=2003 | volume=85}}
- {{Citation | last1=Carlson | first1=James | last2=Griffiths | first2=Phillip | author2-link=Phillip Griffiths | title=What is ... a period domain? | url=http://www.ams.org/notices/200811/tx081101418p.pdf |mr=2463994 | year=2008 | journal=Notices of the American Mathematical Society | issn=0002-9920 | volume=55 | issue=11 | pages=1418–1419}}
- {{Citation | last1=Griffiths | first1=Phillip | author1-link=Phillip Griffiths | last2=Schmid | first2=Wilfried | title=Locally homogeneous complex manifolds | doi=10.1007/BF02392390 |mr=0259958 | year=1969 | journal=Acta Mathematica | issn=0001-5962 | volume=123 | pages=253–302}}
{{differential-geometry-stub}} 1 : Complex manifolds |