请输入您要查询的百科知识:

 

词条 Strawberry
释义

  1. History

  2. Cultivation

      Manuring and harvesting    Pests    Diseases    Domestic cultivation  

  3. Production

  4. Uses

  5. Nutrients

  6. Phytochemicals

      Color    Flavor and fragrance  

  7. Genetics

  8. Allergy

  9. Gallery

  10. See also

  11. References

  12. External links

{{pp-vandalism|small=yes}}{{About||other species of strawberry|Fragaria|other uses}}{{Short description|edible fruit}}{{Use dmy dates|date=July 2014}}{{speciesbox
| name = Strawberry
Fragaria × ananassa
| image= Strawberry BNC.jpg
| image_caption = Strawberry fruit
| image2 = Strawberry Cross BNC.jpg
| image2_caption = Strawberry fruit cross-section
| genus = Fragaria
| species = {{hybrid}} ananassa
| authority = Duchesne
}}

The garden strawberry (or simply strawberry; Fragaria × ananassa)[1] is a widely grown hybrid species of the genus Fragaria, collectively known as the strawberries. It is cultivated worldwide for its fruit. The fruit is widely appreciated for its characteristic aroma, bright red color, juicy texture, and sweetness. It is consumed in large quantities, either fresh or in such prepared foods as preserves, juice, pies, ice creams, milkshakes, and chocolates. Artificial strawberry flavorings and aromas are also widely used in many products like lip gloss, candy, hand sanitizers, perfume, and many others.

The garden strawberry was first bred in Brittany, France, in the 1750s via a cross of Fragaria virginiana from eastern North America and Fragaria chiloensis, which was brought from Chile by Amédée-François Frézier in 1714.[2] Cultivars of Fragaria × ananassa have replaced, in commercial production, the woodland strawberry (Fragaria vesca), which was the first strawberry species cultivated in the early 17th century.[3]

The strawberry is not, from a botanical point of view, a berry. Technically, it is an aggregate accessory fruit, meaning that the fleshy part is derived not from the plant's ovaries but from the receptacle that holds the ovaries.[4] Each apparent "seed" (achene) on the outside of the fruit is actually one of the ovaries of the flower, with a seed inside it.[4]

In 2016, world production of strawberries was 9.2 million tonnes, led by China with 41% of the total.

History

{{Main|Breeding of strawberries}}

The very first garden strawberry was grown in Brittany, France, during the late 18th century.[3] Prior to this, wild strawberries and cultivated selections from wild strawberry species were the common source of the fruit.

The strawberry fruit was mentioned in ancient Roman literature in reference to its medicinal use. The French began taking the strawberry from the forest to their gardens for harvest in the 14th century. Charles V, France's king from 1364 to 1380, had 1,200 strawberry plants in his royal garden. In the early 15th century western European monks were using the wild strawberry in their illuminated manuscripts. The strawberry is found in Italian, Flemish, and German art, and in English miniatures.{{citation needed|date=May 2013}} The entire strawberry plant was used to treat depressive illnesses.

By the 16th century, references of cultivation of the strawberry became more common. People began using it for its supposed medicinal properties and botanists began naming the different species. In England the demand for regular strawberry farming had increased by the mid-16th century.

The combination of strawberries and cream was created by Thomas Wolsey in the court of King Henry VIII.[5] Instructions for growing and harvesting strawberries showed up in writing in 1578. By the end of the 16th century three European species had been cited: F. vesca, F. moschata, and F. viridis. The garden strawberry was transplanted from the forests and then the plants would be propagated asexually by cutting off the runners.

Two subspecies of F. vesca were identified: F. sylvestris alba and F. sylvestris semperflorens. The introduction of F. virginiana from Eastern North America to Europe in the 17th century is an important part of history because this species gave rise to the modern strawberry. The new species gradually spread through the continent and did not become completely appreciated until the end of the 18th century. When a French excursion journeyed to Chile in 1712, it introduced the North American strawberry plant with female flowers that resulted in the common strawberry that we have today.

The Mapuche and Huilliche Indians of Chile cultivated the female strawberry species until 1551, when the Spanish came to conquer the land. In 1765, a European explorer recorded the cultivation of F. chiloensis, the Chilean strawberry. At first introduction to Europe, the plants grew vigorously but produced no fruit. It was discovered in 1766 that the female plants could only be pollinated by plants that produced large fruit: F. moschata, F. virginiana, and F. ananassa. This is when the Europeans became aware that plants had the ability to produce male-only or female-only flowers. As more large-fruit producing plants were cultivated the Chilean strawberry slowly decreased in population in Europe, except for around Brest where the Chilean strawberry thrived. The decline of the Chilean strawberry was caused by F. ananassa.[6]

Cultivation

Strawberry cultivars vary widely in size, color, flavor, shape, degree of fertility, season of ripening, liability to disease and constitution of plant.[7] On average, a strawberry has about 200 seeds on its external membrane.[8] Some vary in foliage, and some vary materially in the relative development of their sexual organs. In most cases, the flowers appear hermaphroditic in structure, but function as either male or female.[9]

For purposes of commercial production, plants are propagated from runners and, in general, distributed as either bare root plants or plugs. Cultivation follows one of two general models—annual plasticulture,[10] or a perennial system of matted rows or mounds.[11] Greenhouses produce a small amount of strawberries during the off season.[12]

The bulk of modern commercial production uses the plasticulture system. In this method, raised beds are formed each year, fumigated, and covered with plastic to prevent weed growth and erosion. Plants, usually obtained from northern nurseries, are planted through holes punched in this covering, and irrigation tubing is run underneath. Runners are removed from the plants as they appear, in order to encourage the plants to put most of their energy into fruit development. At the end of the harvest season, the plastic is removed and the plants are plowed into the ground.[10][13] Because strawberry plants more than a year or two old begin to decline in productivity and fruit quality, this system of replacing the plants each year allows for improved yields and denser plantings.[10][13] However, because it requires a longer growing season to allow for establishment of the plants each year, and because of the increased costs in terms of forming and covering the mounds and purchasing plants each year, it is not always practical in all areas.[13]

The other major method, which uses the same plants from year to year growing in rows or on mounds, is most common in colder climates.[10][11] It has lower investment costs, and lower overall maintenance requirements.[11] Yields are typically lower than in plasticulture.[11]

Another method uses a compost sock. Plants grown in compost socks have been shown to produce significantly higher oxygen radical absorbance capacity (ORAC), flavonoids, anthocyanins, fructose, glucose, sucrose, malic acid, and citric acid than fruit produced in the black plastic mulch or matted row systems.[14] Similar results in an earlier 2003 study conducted by the US Dept of Agriculture, at the Agricultural Research Service, in Beltsville Maryland, confirms how compost plays a role in the bioactive qualities of two strawberry cultivars.[15]

Strawberries are often grouped according to their flowering habit.[7][16] Traditionally, this has consisted of a division between "June-bearing" strawberries, which bear their fruit in the early summer and "ever-bearing" strawberries, which often bear several crops of fruit throughout the season.[16] One plant throughout a season may produce 50 to 60 times or roughly once every three days.[29]

Research published in 2001 showed that strawberries actually occur in three basic flowering habits: short-day, long-day, and day-neutral. These refer to the day-length sensitivity of the plant and the type of photoperiod that induces flower formation. Day-neutral cultivars produce flowers regardless of the photoperiod.[17]

Strawberries may also be propagated by seed, though this is primarily a hobby activity, and is not widely practiced commercially. A few seed-propagated cultivars have been developed for home use, and research into growing from seed commercially is ongoing.[18] Seeds (achenes) are acquired either via commercial seed suppliers, or by collecting and saving them from the fruit.

Strawberries can also be grown indoors in strawberry pots.[19] Although the plant may not naturally grow indoors in the winter, use of LED lighting in combination of blue and red light can allow the plant to grow during the winter.[20] Additionally, in certain areas like the state of Florida, winter is the natural growing season where harvesting starts in mid-November.[21]

Kashubian strawberry (Truskawka kaszubska or Kaszëbskô malëna)[22] are the first Polish fruit to be given commercial protection under EU law. They are produced in Kartuzy, Kościerzyna and Bytów counties and in the municipalities of Przywidz, Wejherowo, Luzino, Szemud, Linia, Łęczyce and Cewice in Kashubia. Only the following varieties may be sold as kaszëbskô malëna: Senga Sengana, Elsanta, Honeoye that have been graded as Extra or Class I.

Manuring and harvesting

Most strawberry plants are now fed with artificial fertilizers, both before and after harvesting, and often before planting in plasticulture.[23]

To maintain top quality, berries are harvested at least every other day. The berries are picked with the caps still attached and with at least half an inch of stem left. Strawberries need to remain on the plant to fully ripen because they do not continue to ripen after being picked. Rotted and overripe berries are removed to minimize insect and disease problems. The berries do not get washed until just before consumption.[24]

Soil test information and plant analysis results are used to determine fertility practices. Nitrogen fertilizer is needed at the beginning of every planting year. There are normally adequate levels of phosphorus and potash when fields have been fertilized for top yields. In order to provide more organic matter, a cover crop of wheat or rye is planted in the winter before planting the strawberries. Strawberries prefer a pH from 5.5 to 6.5 so lime is usually not applied.[25]

The harvesting and cleaning process has not changed substantially over time. The delicate strawberries are still harvested by hand.[26] Grading and packing often occurs in the field, rather than in a processing facility.[26] In large operations, strawberries are cleaned by means of water streams and shaking conveyor belts.

Pests

{{See also|List of Lepidoptera that feed on strawberry plants}}

Around 200 species of pests are known to attack strawberries both directly and indirectly.[27] These pests include slugs, moths, fruit flies, chafers, strawberry root weevils, strawberry thrips, strawberry sap beetles, strawberry crown moth, mites, aphids, and others.[27][28] The caterpillars of a number of species of Lepidoptera feed on strawberry plants. For example, the Ghost moth is known to be a pest of the strawberry plant.

The strawberry aphid, Chaetosiphon fragaefolii, is a bug species found in the United States (Arizona), Argentina and Chile. It is a vector of the strawberry mild yellow-edge virus.

The amounts of pesticides required for industrial production of strawberries ( {{convert|300|lb}} in California per acre) have led to the strawberry leading the list of EWG's "Dirty Dozen" of pesticide-contaminated produce.[29]

Diseases

{{See also|List of strawberry diseases}}

Strawberry plants can fall victim to a number of diseases, especially when subjected to stress.[30][31] The leaves may be infected by powdery mildew, leaf spot (caused by the fungus Sphaerella fragariae), leaf blight (caused by the fungus Phomopsis obscurans), and by a variety of slime molds.[30] The crown and roots may fall victim to red stele, verticillium wilt, black root rot, and nematodes.[30] The fruits are subject to damage from gray mold, rhizopus rot, and leather rot.[30] To prevent root-rotting, strawberries should be planted every four to five years in a new bed, at a different site.[32]

The plants can also develop disease from temperature extremes during winter.[30] When watering strawberries, advice has been given to water only the roots and not the leaves, as moisture on the leaves encourages growth of fungus.[33]

Domestic cultivation

Strawberries are popular and rewarding plants to grow in the domestic environment, be it for consumption or exhibition purposes, almost anywhere in the world. The best time to plant is in late summer or spring. Plant in full sun or dappled shade, and in somewhat sandy soil. The addition of manure and a balanced fertilizer aids strong growth. Alternatively they can be planted in pots or special planters using compost. Fibre mats placed under each plant will protect fruits from touching the ground, and will act as a weed barrier.

Strawberries are tough and will survive many conditions, but during fruit formation, moisture is vital, especially if growing in containers. Moreover, protection must be provided against slugs and snails which attack the ripe fruit. The fruit matures in midsummer (wild varieties can mature earlier) and should be picked when fully ripe — that is, the fruit is a uniform bright red colour. The selection of different varieties can extend the season in both directions.[34] Numerous cultivars have been selected for consumption and for exhibition purposes. The following cultivars have gained the Royal Horticultural Society's Award of Garden Merit:-

  • 'Cambridge Favourite'[35]
  • 'Hapil'[36]
  • 'Honeoye' ({{IPAc-en|ˈ|h|ʌ|n|i|ɔɪ}} {{respell|HUN|ee|oy}}[37]
  • 'Pegasus'[38]
  • 'Rhapsody'[39]
  • 'Symphony'[40]

Propagation is by runners, which can be pegged down to encourage them to take root,[41] or cut off and placed in a new location. Established plants should be replaced every three years, or sooner if there are signs of disease.

When propagating strawberries, one should avoid using the same soil or containers that were previously used for strawberry cultivation. After cultivating strawberries, rotating to another culture is advisable, because diseases that attack one species might not attack another.[42]

Strawberry production – 2016
Country(millions of tonnes)
{{CHN}}
3.8
{{USA}}
1.4
{{MEX}}
0.5
{{EGY}}
0.5
{{TUR}}
0.4
{{ESP}}
0.4
World
9.2
Source: FAOSTAT of the United Nations[43]

Production

In 2016, world production of strawberries was 9.2 million tonnes, led by China with 41% of the total, and the United States with 15% (table).

Uses

In addition to being consumed fresh, strawberries can be frozen, made into preserves,[44] as well as dried and used in prepared foods, such as cereal bars.[45] Strawberries and strawberry flavorings are a popular addition to dairy products, such as strawberry-flavored milk, strawberry ice cream, strawberry milkshakes, strawberry smoothies and strawberry yogurts.

In the United Kingdom, "strawberries and cream" is a popular dessert consumed at the Wimbledon tennis tournament.[5] Strawberries and cream is also a staple snack in Mexico, rarely unavailable at ice cream parlors. In Sweden, strawberries are a traditional dessert served on St John's Day, also known as Midsummer's Eve. Depending on area, strawberry pie, strawberry rhubarb pie, or strawberry shortcake are also popular. In Greece, strawberries are usually sprinkled with sugar and then dipped in Metaxa, a famous brandy, and served as a dessert. In Italy, strawberries have been used for various desserts and as a popular flavoring for gelato (gelato alla fragola). In the Philippines, strawberries are also popular, in which it is used for making the syrup in taho.

Strawberry pigment extract can be used as a natural acid/base indicator due to the different color of the conjugate acid and conjugate base of the pigment.[46]

Nutrients

{{nutritional value
| name=Nutrition
| image=
| kJ=136
| fat=0.3 g
| protein=0.67 g
| water=90.95 g
| carbs=7.68 g
| fiber=2 g
| sugars=4.89 g
| calcium_mg=16
| iron_mg=0.41
| magnesium_mg=13
| phosphorus_mg=24
| potassium_mg=154
| sodium_mg=1
| zinc_mg=0.14
| manganese_mg=0.386
| opt1n=Fluoride
| opt1v=4.4 µg
| vitC_mg=58.8
| thiamin_mg=0.024
| riboflavin_mg=0.022
| niacin_mg=0.386
| pantothenic_mg=0.125
| vitB6_mg=0.047
| folate_ug=24
| choline_mg=5.7
| vitE_mg=0.29
| vitK_ug=2.2
| source_usda = 0
| note=Link to USDA Database entry
}}

One serving (100 g; see Table) of strawberries contains approximately 33 kilocalories, is an excellent source of vitamin C, a good source of manganese, and provides several other vitamins and dietary minerals in lesser amounts.[44][47][69]

Strawberries contain a modest amount of essential unsaturated fatty acids in the achene (seed) oil.[69]

Phytochemicals

Garden strawberries contain the dimeric ellagitannin agrimoniin which is an isomer of sanguiin H-6.[48][49] Other polyphenols present include flavonoids, such as anthocyanins, flavanols, flavonols and phenolic acids, such as hydroxybenzoic acid and hydroxycinnamic acid.[50] Strawberries contain fisetin and possess higher levels of this flavonoid than other fruits.[49][51] Although achenes comprise only about 1% of total fresh weight of a strawberry, they contribute 11% of the fruit's total polyphenols, which, in achenes, include ellagic acid, ellagic acid glycosides, and ellagitannins.[52]

Color

Pelargonidin-3-glucoside is the major anthocyanin in strawberries and cyanidin-3-glucoside is found in smaller proportions. Although glucose seems to be the most common substituting sugar in strawberry anthocyanins, rutinose, arabinose, and rhamnose conjugates have been found in some strawberry cultivars.[50]

Purple minor pigments consisting of dimeric anthocyanins (flavanol-anthocyanin adducts : catechin(4α→8)pelargonidin 3-O-β-glucopyranoside, epicatechin(4α→8)pelargonidin 3-O-β-glucopyranoside, afzelechin(4α→8)pelargonidin 3-O-β-glucopyranoside and epiafzelechin(4α→8)pelargonidin 3-O-β-glucopyranoside) can also be found in strawberries.[53]

Flavor and fragrance

As strawberry flavor and fragrance are popular characteristics for consumers,[54] they are used widely in a variety of manufacturing, including foods, beverages, confections, perfumes and cosmetics.[55][56]

Sweetness, fragrance and complex flavor are favorable attributes.[57] In plant breeding and farming, emphasis is placed on sugars, acids, and volatile compounds, which improve the taste and fragrance of a ripe strawberry.[58] Esters, terpenes, and furans are chemical compounds having the strongest relationships to strawberry flavor and fragrance, with a total of 31 volatile compounds significantly correlated to favorable flavor and fragrance.[58]

Chemicals present in the fragrance of strawberries include:

{{div col|colwidth=18em}}
  • methyl acetate
  • (E)-2-hexen-1-ol
  • (E)-2-hexenal
  • (E)-2-pentenal
  • (E,E)-2,4-hexadienal
  • (Z)-2-hexenyl acetate
  • (Z)-3-hexenyl acetate
  • 1-hexanol
  • 2-heptanol
  • 2-heptanone
  • 2-methyl butanoic acid
  • 2-methylbutyl acetate
  • alpha-terpineol
  • amyl acetate
  • amyl butyrate
  • benzaldehyde
  • benzyl acetate
  • butyl acetate
  • butyl butyrate
  • butyl hexanoate
  • butyric acid
  • octanoic acid
  • decyl acetate
  • decyl butyrate
  • d-limonene
  • ethyl 2-methylbutanoate
  • ethyl 3-methylbutanoate
  • ethyl acetate
  • ethyl benzoate
  • ethyl butyrate
  • ethyl decanoate
  • ethyl hexanoate
  • ethyl octanoate
  • ethyl pentanoate
  • ethyl propanoate
  • ethyl-2-hexenoate
  • α-farnesene
  • β-farnesene
  • furaneol
  • γ-decalactone
  • γ-dodecalactone
  • heptanoic acid
  • n-hexanal
  • hexanoic acid
  • hexyl acetate
  • isoamyl acetate
  • isoamyl hexanoate
  • isopropyl acetate
  • isopropyl butanoate
  • isopropyl hexanoate
  • linalool
  • mesifurane
  • methyl butyrate
  • methyl hexanoate
  • methyl isovalerate
  • methyl octanoate
  • methyl pentanoate
  • methyl propanoate
  • (E)-nerolidol
  • nonanal
  • nonanoic acid
  • ocimenol
  • octyl acetate
  • octyl butyrate
  • octyl hexanoate
  • octyl isovalerate
  • propyl butyrate
  • propyl hexanoate[59]
{{Div col end}}

Genetics

Modern strawberries have complex octaploid genetics (8 sets of chromosomes),[60] a trait favoring DNA extractions. Strawberries have been sequenced to display 7,096 genes.[61] Strawberries suffer from severe inbreeding depression, and most cultivars are highly heterozygous. In many entry level Biology classes, strawberries are used to demonstrate the extraction of DNA due to their octoploid structure.

Allergy

Some people experience an anaphylactoid reaction to eating strawberries.[62] The most common form of this reaction is oral allergy syndrome, but symptoms may also mimic hay fever or include dermatitis or hives, and, in severe cases, may cause breathing problems.[63] Proteomic studies indicate that the allergen may be tied to a protein for the red anthocyanin biosynthesis expressed in strawberry ripening, named Fra a1 (Fragaria allergen1).[64] Homologous proteins are found in birch pollen and apple, suggesting that people may develop cross-reactivity to all three species.

White-fruited strawberry cultivars, lacking Fra a1, may be an option for strawberry allergy sufferers. Since they lack a protein necessary for normal ripening by anthocyanin synthesis of red pigments, they do not turn the mature berries of other cultivars red.[64] They ripen but remain white, pale yellow or "golden", appearing like immature berries; this also has the advantage of making them less attractive to birds. A virtually allergen-free cultivar named 'Sofar' is available.[65][66]

Gallery

See also

{{Portal|Strawberry|Food}}{{div col|colwidth=30em}}
  • California Strawberry Commission
  • Fraise Tagada (strawberry-shaped candy popular in France)
  • List of culinary fruits
  • List of strawberry cultivars
  • List of strawberry dishes
  • List of strawberry topics
  • Musk strawberry (hautbois strawberry)
  • Plant City, Florida (winter strawberry capital of the world)
  • Pineberry
  • Pomology
  • Strawberry cake
  • Strawberry sauce
{{div col end}}

References

1. ^{{cite journal |vauthors=Manganaris GA, Goulas V, Vicente AR, Terry LA |title=Berry antioxidants: small fruits providing large benefits|journal=Journal of the Science of Food and Agriculture|volume=94|issue=5|pages=825–33|date=March 2014|pmid=24122646|doi=10.1002/jsfa.6432}}
2. ^{{cite web |url=http://www.botgard.ucla.edu/html/botanytextbooks/economicbotany/Fragaria/index.html |title=Strawberry, The Maiden With Runners |publisher=Botgard.ucla.edu |deadurl=yes |archiveurl=https://web.archive.org/web/20100706193324/http://www.botgard.ucla.edu/html/botanytextbooks/economicbotany/Fragaria/index.html |archivedate=6 July 2010 |df=dmy-all }}
3. ^{{cite web |last=Welsh |first=Martin |url=http://www.nvsuk.org.uk/growing_show_vegetables_1/strawberry.php|archiveurl=https://web.archive.org/web/20080802231801/http://www.nvsuk.org.uk/growing_show_vegetables_1/strawberry.php|archivedate=2 August 2008|title=Strawberries |publisher=Nvsuk.org.uk }}
4. ^Esau, K. (1977). Anatomy of seed plants. John Wiley and Sons, New York. {{ISBN|0-471-24520-8}}.
5. ^{{cite news|title=Wimbledon's strawberries and cream has Tudor roots|url=http://news.bbc.co.uk/local/surrey/hi/people_and_places/newsid_8756000/8756132.stm|agency=BBC|date=9 June 2015}}
6. ^{{cite web|last=Darrow|first=George M.|title=The Strawberry: History, Breeding and Physiology|url=http://specialcollections.nal.usda.gov/speccoll/collectionsguide/darrow/Darrow_TheStrawberry.pdf}}
7. ^{{cite web |url=http://extension.missouri.edu/publications/DisplayPub.aspx?P=G6135 |title=G6135 Home Fruit Production: Strawberry Cultivars and Their Culture|publisher=University of Missouri}}
8. ^{{Cite web|url=http://strawberryplants.org/2010/05/strawberry-seeds/|title=Strawberry Seeds|last=|first=|date=|website=Strawberry Plants|publisher=|access-date=2 August 2016}}
9. ^Fletcher, Stevenson Whitcomb (1917) Strawberry Growing, The Macmillan Co., New York, [https://books.google.com/books?id=uQA2AAAAMAAJ&pg=PA127 p. 127].
10. ^{{cite web |url=http://www.ag.ohio-state.edu/~news/story.php?id=2126 |title=Strawberry Plasticulture Offers Sweet Rewards |publisher=Ag.ohio-state.edu |date=28 June 2002 |accessdate=5 December 2009}}
11. ^{{cite web|url=http://www.newenglandvfc.org/pdf_proceedings/StawberryProduction.pdf |title=Strawberry Production Basics: Matted Row |publisher= newenglandvfc.org}}
12. ^{{cite web |url=http://www.hort.cornell.edu/pritts/grnhouse.html |title=Pritts Greenhouse Berried Treasures |publisher=Hort.cornell.edu}}
13. ^{{cite web |url=http://www.noble.org/Ag/Horticulture/StrawberryFields/index.html |title=Strawberry Fields Forever |publisher=Noble.org }}
14. ^{{cite journal |author1=Wang SW. |author2=Millner P. |doi=10.1021/jf9020575|pmid=20560628 |title=Effect of Different Cultural Systems on Antioxidant Capacity, Phenolic Content, and Fruit Quality of Strawberries (Fragaria × aranassa Duch.)|journal=Journal of Agricultural and Food Chemistry|volume=57|issue=20|pages=9651–9657|year=2009}}
15. ^{{cite journal |vauthors=Wang SY, Lin HS |title=Compost as a soil supplement increases the level of antioxidant compounds and oxygen radical absorbance capacity in strawberries|journal=Journal of Agricultural and Food Chemistry|volume=51|issue=23|pages=6844–50|date=November 2003|pmid=14582984|doi=10.1021/jf030196x|url=}}
16. ^{{cite web |last=Sagers |first=Larry A. |url=http://www.larrysagers.com/weeklyarticles/proper_cultivation_yields_strawberry_fields_forever_92-04-15.html|archiveurl=https://web.archive.org/web/20070420111502/http://www.larrysagers.com/weeklyarticles/proper_cultivation_yields_strawberry_fields_forever_92-04-15.html|archivedate=20 April 2007|title=Proper Cultivation Yields Strawberry Fields Forever |publisher=Deseret News|date=15 April 1992}}
17. ^{{Cite book |last=Hokanson |first=S. C. |last2=Maas |first2=J. L. |year=2001|title= Strawberry biotechnology|journal=Plant Breeding Reviews|url=https://books.google.com/books?id=shbmDigtiqkC&pg=PA139|isbn=978-0-471-41847-4|pages=139–179}}
18. ^{{cite journal | last1 = Wilson | first1 = D. | last2 = Goodall | first2 = A. | last3 = Reeves | first3 = J. | doi = 10.1007/BF00022647 | title = An improved technique for the germination of strawberry seeds | journal = Euphytica | volume = 22 | issue = 2 | pages = 362 | year = 1973 | pmid = | pmc = }}
19. ^{{Cite book|url=https://books.google.com/?id=aNMaWzeffjMC&pg=PA146&dq=%C2%A0Strawberries+grown+indoors+in+strawberry+pots#v=onepage&q=%C2%A0Strawberries%20grown%20indoors%20in%20strawberry%20pots&f=false|title=The House Plant Expert|last=Hessayon|first=D. G.|date=1996|publisher=Sterling Publishing Company, Inc.|isbn=9780903505352|language=en}}
20. ^{{Cite news|url=https://www.independent.co.uk/voices/comment/strawberries-in-winter-welcome-to-franken-season-9032888.html|title=Strawberries in winter? Welcome to franken-season|work=The Independent|access-date=2018-06-07|language=en-GB}}
21. ^{{Cite news|url=http://www.tampabay.com/things-to-do/food/cooking/10-facts-about-florida-strawberries-that-might-surprise-you/2268248|title=10 facts about Florida strawberries that might surprise you|date=2016-03-07|access-date=2018-06-07}}
22. ^{{cite web|url=http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2009:089:0004:0008:EN:PDF |title=COUNCIL REGULATION (EC) No 510/2006 'TRUSKAWKA KASZUBSKA' or 'KASZËBSKÔ MALËNA' EC No: PL-PGI-0005-0593-19.03.2007|publisher=European Union |date=18 April 2009}}
23. ^{{cite web |url=http://edis.ifas.ufl.edu/document_hs370 |title=HS1116/HS370: Nitrogen Fertilization of Strawberry Cultivars: Is Preplant Starter Fertilizer Needed? |publisher=Edis.ifas.ufl.edu |date=6 August 2007 |accessdate=5 December 2009}}
24. ^{{cite web|last=Bordelon|first=Bruce|title=Growing Strawberries|url=https://www.purdue.edu/hla/sites/yardandgarden/wp-content/uploads/sites/2/2016/10/HO-46.pdf|publisher=Purdue University}}
25. ^{{cite web|title=Production Guide for Commercial Strawberries|url=http://www.extension.iastate.edu/Publications/PM672D.pdf|publisher=Iowa State University}}
26. ^{{cite web |url=http://www.extension.umn.edu/distribution/horticulture/DG6237.html |title=Commercial Postharvest Handling of Strawberries (Fragaria spp.) |publisher=Extension.umn.edu }}
27. ^{{cite web |url=http://www.virginiafruit.ento.vt.edu/StrawMaster.html |title=Insect Pests of Strawberries and Their Management |publisher=Virginiafruit.ento.vt.edu |date=3 May 2000 |accessdate=5 December 2009}}
28. ^{{cite web |url=http://ipmworld.umn.edu/chapters/rao.htm |title=Radcliffe's IPM World Textbook | CFANS | University of Minnesota |publisher=Ipmworld.umn.edu |date=20 November 2009 |accessdate=5 December 2009 |deadurl=yes |archiveurl=https://web.archive.org/web/20090626055601/http://ipmworld.umn.edu/chapters/rao.htm |archivedate=26 June 2009 |df=dmy-all }}
29. ^{{cite web|url=http://www.foxbusiness.com/features/2016/04/12/strawberries-are-now-most-contaminated-produce.html|title=Strawberries are Now the Most Contaminated Produce|first=Jade|last=Scipioni|date=12 April 2016|publisher=}}
30. ^{{cite web |url=http://www.extension.umn.edu/distribution/horticulture/DG1148.html |title=Strawberry Diseases |publisher=Extension.umn.edu |deadurl=yes |archiveurl=https://web.archive.org/web/20090323074306/http://www.extension.umn.edu/distribution/horticulture/DG1148.html |archivedate=23 March 2009 |df=dmy-all }}
31. ^{{cite web |url=http://extension.colostate.edu/topic-areas/yard-garden/strawberry-diseases-2-931/ |title=Strawberry Diseases |website= Colorado State University|access-date= March 28, 2018}}
32. ^{{cite journal |last=Pleasant |first=Barbara | year = 2011 | title = All About Growing Strawberries | url = http://www.motherearthnews.com/organic-gardening/growing-strawberries-zm0z11zkon.aspx| journal = Mother Earth News | issue = 248 | pages = 23–25 }}
33. ^{{cite journal |last=Davis |first=Julie Bawden | year = 2009 | title = Strawberry Success | journal = Organic Gardening | volume = 56 | issue = 5 | pages = 52–56 }}
34. ^{{cite book|last=Klein|first=Carol|title=Grow your own fruit|year=2009|publisher=Mitchell Beazley|location=UK|isbn=978-1-84533-434-5|page=224}}
35. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=5802 |title=RHS Plant Selector Fragaria × ananassa 'Cambridge Favourite' (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
36. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=6119 |title=RHS Plant Selector Fragaria × ananassa 'Hapil' (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
37. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=5892 |title=RHS Plant Selector Fragaria × ananassa 'Honeoye' (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
38. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=805 |title=RHS Plant Selector Fragaria × ananassa 'Pegasus' PBR (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
39. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=5906 |title=RHS Plant Selector Fragaria × ananassa 'Rhapsody' (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
40. ^{{cite web|url=http://apps.rhs.org.uk/plantselector/plant?plantid=5066 |title=RHS Plant Selector Fragaria × ananassa 'Symphony' PBR (F) AGM / RHS Gardening |publisher=Apps.rhs.org.uk }}
41. ^{{cite web|url=https://www.youtube.com/watch?v=O3cEljuKJ64 | title=Propagating Strawberry runners |date=6 June 2012 |work=Youtube}}
42. ^{{cite web|last=Lampe|first=Dianne|url=https://www.igardenplanting.com/complete-guide-how-to-grow-strawberries/|title=Growing Strawberries|accessdate=28 April 2013}}
43. ^{{cite web|url=http://www.fao.org/faostat/en/#data/QC|title= Strawberry production in 2016, Crops/Regions/World list/Production Quantity (pick lists)|date=2017|publisher=UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT)|accessdate=5 November 2018}}
44. ^{{cite journal |vauthors=Giampieri F, Alvarez-Suarez JM, Mazzoni L, Romandini S, Bompadre S, Diamanti J, Capocasa F, Mezzetti B, Quiles JL, Ferreiro MS, Tulipani S, Battino M |title=The potential impact of strawberry on human health|journal=Natural Product Research|volume=27|issue=4–5|pages=448–55|date=March 2013|pmid=22788743|doi=10.1080/14786419.2012.706294}}
45. ^{{cite web |last=Drummond |first=Ree | url=http://www.foodnetwork.com/recipes/ree-drummond/strawberry-oatmeal-bars-recipe/index.html | title=Strawberry Oatmeal Bars | year=2011 | publisher=Food Network | accessdate=27 March 2013}}
46. ^[https://web.archive.org/web/20090319125519/http://alameda.peralta.edu/Projects/20295/Chem_1B_Lab_Manual/Experiment_9_-_pH_indicators.doc "9. Acid-Base Indicators and pH"]. in Chemistry 1B Experiment 9 Alameda.peralta.edu
47. ^{{cite web |url=http://www.nutritiondata.com/facts/fruits-and-fruit-juices/2064/2 |title=Nutrition Facts and Analysis for Strawberries, raw, 100 g; USDA Nutrient Database, SR-21|publisher=Conde Nast|website=Nutritiondata.com|date=2014|accessdate=26 April 2014}}
48. ^{{cite journal |vauthors=Lipińska L, Klewicka E, Sójka M |title=The structure, occurrence and biological activity of ellagitannins: a general review|journal=Acta Scientiarum Polonorum. Technologia Alimentaria|volume=13|issue=3|pages=289–99|date=September 2014|pmid=24887944|doi=10.17306/j.afs.2014.3.7}}
49. ^{{cite journal | last1 = Vrhovsek | first1 = U. | last2 = Guella | first2 = G. | last3 = Gasperotti | first3 = M. | last4 = Pojer | first4 = E. | last5 = Zancato | first5 = M. | last6 = Mattivi | first6 = F. | doi = 10.1021/jf2052256 | title = Clarifying the Identity of the Main Ellagitannin in the Fruit of the Strawberry, Fragaria vesca and Fragaria ananassa Duch | journal = Journal of Agricultural and Food Chemistry | volume = 60 | issue = 10 | pages = 2507–2516 | year = 2012 | pmid = 22339338| pmc = }}
50. ^{{cite journal |vauthors=Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M |title=The strawberry: composition, nutritional quality, and impact on human health|journal=Nutrition|volume=28|issue=1|pages=9–19|date=January 2012|pmid=22153122|doi=10.1016/j.nut.2011.08.009}}
51. ^{{cite journal |vauthors=Khan N, Syed DN, Ahmad N, Mukhtar H |title=Fisetin: a dietary antioxidant for health promotion|journal=Antioxidants & Redox Signaling|volume=19|issue=2|pages=151–62|date=July 2013|pmid=23121441|pmc=3689181|doi=10.1089/ars.2012.4901}}
52. ^{{cite journal | pmid = 15884835| year = 2005| author1 = Aaby| first1 = K| title = Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa)| journal = Journal of Agricultural and Food Chemistry| volume = 53| issue = 10| pages = 4032–40| last2 = Skrede| first2 = G| last3 = Wrolstad| first3 = R. E.| doi = 10.1021/jf048001o}}
53. ^{{cite journal|pages=1421–1428|doi=10.1016/j.phytochem.2004.05.003|pmid=15231416|title = Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols|journal=Phytochemistry|volume=65|issue=10|year = 2004|last1 = Fossen|first1 = Torgils|last2=Rayyan|first2=Saleh|last3=Andersen|first3=Øyvind M}}
54. ^{{cite journal | pmid = 17954736| year = 2007| author1 = Thompson| first1 = J. L.| title = Preferences for commercial strawberry drinkable yogurts among African American, Caucasian, and Hispanic consumers in the United States| journal = Journal of Dairy Science| volume = 90| issue = 11| pages = 4974–87| last2 = Lopetcharat| first2 = K| last3 = Drake| first3 = M. A.| doi = 10.3168/jds.2007-0313}}
55. ^{{cite web|url=http://io9.com/5958880/how-flavor-chemists-make-your-food-so-addictively-good|title=How Flavor Chemists Make Your Food So Addictively Good|publisher=io9|date=8 November 2012|accessdate=26 April 2014}}
56. ^{{cite web |last=Cassell |first=D|url=http://www.foodprocessing.com/articles/2014/flavor-trends-yogurt/|publisher=Food Processing|title=2014 Flavor Trends: Yogurt's Fruitful Union|date=2014|accessdate=26 April 2014}}
57. ^{{cite journal|title=Framing the perfect strawberry: An exercise in consumer-assisted selection of fruit crops|url=http://hort.ifas.ufl.edu/pip/pubs/colquhoun_jbr_2012.pdf|journal=Journal of Berry Research|year=2012|volume=2|issue=1|pages=45–61|doi=10.3233/JBR-2011-027|vauthors=Colquhoun TA, etal|deadurl=yes|archiveurl=https://web.archive.org/web/20140427010417/http://hort.ifas.ufl.edu/pip/pubs/colquhoun_jbr_2012.pdf|archivedate=27 April 2014|df=dmy-all}}
58. ^{{cite journal | pmid = 24523895| year = 2014| author1 = Schwieterman| first1 = M. L.| title = Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception| journal = PLoS ONE| volume = 9| issue = 2| pages = e88446| last2 = Colquhoun| first2 = T. A.| last3 = Jaworski| first3 = E. A.| last4 = Bartoshuk| first4 = L. M.| last5 = Gilbert| first5 = J. L.| last6 = Tieman| first6 = D. M.| last7 = Odabasi| first7 = A. Z.| last8 = Moskowitz| first8 = H. R.| last9 = Folta| first9 = K. M.| authorlink9 = Kevin Folta | last10 = Klee| first10 = H. J.| last11 = Sims| first11 = C. A.| last12 = Whitaker| first12 = V. M.| last13 = Clark| first13 = D. G.| doi = 10.1371/journal.pone.0088446| pmc = 3921181| bibcode = 2014PLoSO...988446S}}
59. ^{{cite journal|last=Jouquand|first=Celine|first2= Craig|last2=Chandler | first3=Anne | last3=Plotto |first4=Kevin |last4=Goodner|title=A Sensory and Chemical Analysis of Fresh Strawberries Over Harvest Dates and Seasons Reveals Factors that Affect Eating Quality|journal=Amer. Soc. Hort. Sci.|year=2008|volume=133|issue=6|pages=859–867|url=http://journal.ashspublications.org/content/133/6/859.full.pdf|doi=10.21273/JASHS.133.6.859}}
60. ^{{cite journal | pmid = 24282021| year = 2014| author1 = Hirakawa| first1 = H| title = Dissection of the octoploid strawberry genome by deep sequencing of the genomes of fragaria species| journal = DNA Research| volume = 21| issue = 2| pages = 169–81| last2 = Shirasawa| first2 = K| last3 = Kosugi| first3 = S| last4 = Tashiro| first4 = K| last5 = Nakayama| first5 = S| last6 = Yamada| first6 = M| last7 = Kohara| first7 = M| last8 = Watanabe| first8 = A| last9 = Kishida| first9 = Y| last10 = Fujishiro| first10 = T| last11 = Tsuruoka| first11 = H| last12 = Minami| first12 = C| last13 = Sasamoto| first13 = S| last14 = Kato| first14 = M| last15 = Nanri| first15 = K| last16 = Komaki| first16 = A| last17 = Yanagi| first17 = T| last18 = Guoxin| first18 = Q| last19 = Maeda| first19 = F| last20 = Ishikawa| first20 = M| last21 = Kuhara| first21 = S| last22 = Sato| first22 = S| last23 = Tabata| first23 = S| last24 = Isobe| first24 = S. N.| doi = 10.1093/dnares/dst049| pmc = 3989489}}
61. ^{{cite journal | pmid = 20849591| year = 2010| author1 = Bombarely| first1 = A| title = Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies| journal = BMC Genomics| volume = 11| pages = 503| last2 = Merchante| first2 = C| last3 = Csukasi| first3 = F| last4 = Cruz-Rus| first4 = E| last5 = Caballero| first5 = J. L.| last6 = Medina-Escobar| first6 = N| last7 = Blanco-Portales| first7 = R| last8 = Botella| first8 = M. A.| last9 = Muñoz-Blanco| first9 = J| last10 = Sánchez-Sevilla| first10 = J. F.| last11 = Valpuesta| first11 = V| doi = 10.1186/1471-2164-11-503| pmc = 2996999}}
62. ^{{cite web |url=http://www.cpmc.org/advanced/pediatrics/patients/topics/food-allergies.html|title=Children and food allergies|publisher=California Pacific Medical Center|date=2013|accessdate=27 April 2014}}
63. ^{{cite journal | pmid = 19940506| year = 2010| author1 = Patiwael| first1 = J. A.| title = Occupational allergy in strawberry greenhouse workers| journal = International Archives of Allergy and Immunology| volume = 152| issue = 1| pages = 58–65| last2 = Vullings| first2 = L. G.| last3 = De Jong| first3 = N. W.| last4 = Van Toorenenbergen| first4 = A. W.| last5 = Gerth Van Wijk| first5 = R| last6 = De Groot| first6 = H| doi = 10.1159/000260084| url = http://repub.eur.nl/pub/28314}}
64. ^{{cite journal | pmid = 19969523| year = 2010| author1 = Muñoz| first1 = C| title = The strawberry fruit Fra a allergen functions in flavonoid biosynthesis| journal = Molecular Plant| volume = 3| issue = 1| pages = 113–24| last2 = Hoffmann| first2 = T| last3 = Escobar| first3 = N. M.| last4 = Ludemann| first4 = F| last5 = Botella| first5 = M. A.| last6 = Valpuesta| first6 = V| last7 = Schwab| first7 = W| doi = 10.1093/mp/ssp087}}
65. ^{{cite journal |vauthors=Hjernø K, Alm R, Canbäck B, Matthiesen R, Trajkovski K, Björk L, Roepstorff P, Emanuelsson C |title=Down-regulation of the strawberry Bet v 1-homologous allergen in concert with the flavonoid biosynthesis pathway in colorless strawberry mutant |journal=Proteomics |volume=6 |issue=5 |pages=1574–87 |year=2006|pmid=16447153 | doi=10.1002/pmic.200500469}}
66. ^{{cite web|author=Idea TV GmbH |url=http://www.innovations-report.com/html/reports/medicine_health/report-45626.html |title=The chemistry of strawberry allergy (includes 'Sofar' reference) |publisher=Innovations-report.com |date=21 June 2005 |accessdate=9 March 2013}}

External links

{{Wiktionary|strawberry}}{{Commons category multi|Strawberries|Fragaria × ananassa}}
  • [https://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?244 Fragaria × ananassa data from GRIN Taxonomy Database]
  • {{cite AmCyc |last=Thurber |first=George |wstitle=Strawberry|short=x}}
  • {{cite EB1911|wstitle=Strawberry |short=x}}
  • {{YouTube|mdCbB0XfW9M|Demonstration of strawberry growth lifecycle timelapse}}
{{fragaria}}{{Taxonbar|from=Q13158}}{{Authority control}}

6 : Fragaria|Hybrid fruit|Articles containing video clips|Crops|Strawberries|Sour fruits

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 18:33:28