请输入您要查询的百科知识:

 

词条 Streptomyces
释义

  1. Taxonomy

  2. Morphology

  3. Genomics

  4. Biotechnology

  5. Plant pathogenic bacteria

  6. Medicine

      Antifungals    Antibacterials    Antiparasitic drugs    Other  

  7. See also

  8. References

  9. Further reading

  10. External links

{{Italic title}}{{Taxobox
| name = Streptomyces
| image = Streptomyces_sp_01.png
| image_width = 240px
| image_caption = Slide culture of a Streptomyces species
| regnum = Bacteria
| phylum = Actinobacteria
| classis = Actinomycetes
| ordo = Actinomycetales
| familia = Actinomycetaceae
| genus = Streptomyces
| genus_authority = Waksman & Henrici 1943
| diversity_link = List of Streptomyces species
| diversity = About 550 species
| synonyms =Streptoverticillium
}}

Streptomyces is the largest genus of Actinobacteria and the type genus of the family Streptomycetaceae.[1] Over 500 species of Streptomyces bacteria have been described.[2] As with the other Actinobacteria, streptomycetes are gram-positive, and have genomes with high GC content.[3] Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.

Streptomycetes are characterised by a complex secondary metabolism.[3] They produce over two-thirds of the clinically useful antibiotics of natural origin (e.g., neomycin, cypemycin, grisemycin, bottromycins and chloramphenicol).[4][5] The now uncommonly used streptomycin takes its name directly from Streptomyces. Streptomycetes are infrequent pathogens, though infections in humans, such as mycetoma, can be caused by S. somaliensis and S. sudanensis, and in plants can be caused by S. caviscabies, S. acidiscabies, S. turgidiscabies and S. scabies.

Taxonomy

{{see also|List of Streptomyces species}}

Streptomyces is the type genus of the family Streptomycetaceae[6] and currently covers close to 576 species with the number increasing every year.[7] Acidophilic and acid-tolerant strains that were initially classified under this genus have later been moved to Kitasatospora (1997) [8] and Streptacidiphilus (2003).[9] Species nomenclature are usually based on their color of hyphae and spores.

Saccharopolyspora erythraea was formerly placed in this genus (as Streptomyces erythraeus).

Morphology

The genus Streptomyces includes aerobic, Gram-positive, filamentous bacteria that produce well-developed vegetative hyphae (between 0.5-2.0 µm in diameter) with branches. They form a complex substrate mycelium that aids in scavenging organic compounds from their substrates.[11] Although the mycelia and the aerial hyphae that arise from them are amotile, mobility is achieved by dispersion of spores.[11] Spore surfaces may be hairy, rugose, smooth, spiny or warty.[10] In some species, aerial hyphae consist of long, straight filaments, which bear 50 or more spores at more or less regular intervals, arranged in whorls (verticils). Each branch of a verticil produces, at its apex, an umbel, which carries from two to several chains of spherical to ellipsoidal, smooth or rugose spores.[11] Some strains form short chains of spores on substrate hyphae. Sclerotia-, pycnidia-, sporangia-, and synnemata-like structures are produced by some strains.

Genomics

The complete genome of "S. coelicolor strain A3(2)" was published in 2002.[12] At the time, the "S. coelicolor" genome was thought to contain the largest number of genes of any bacterium.[12] The chromosome is 8,667,507 bp long with a GC-content of 72.1%, and is predicted to contain 7,825 protein-encoding genes.[12] In terms of taxonomy, "S. coelicolor A3(2)" belongs to the species S. violaceoruber, and is not a validly described separate species; "S. coelicolor A3(2)" is not to be mistaken for the actual S. coelicolor (Müller), although it is often referred to as S. coelicolor for convenience.[13]

The first complete genome sequence of S. avermitilis was completed in 2003.[14] Each of these genomes forms a chromosome with a linear structure, unlike most bacterial genomes, which exist in the form of circular chromosomes.[15] The genome sequence of S. scabies, a member of the genus with the ability to cause potato scab disease, has been determined at the Wellcome Trust Sanger Institute. At 10.1 Mbp long and encoding 9,107 provisional genes, it is the largest known Streptomyces genome sequenced, probably due to the large pathogenicity island.[15][16]

Biotechnology

In recent years, biotechnology researchers have begun using Streptomyces species for heterologous expression of proteins. Traditionally, Escherichia coli was the species of choice to express eukaryotic genes, since it was well understood and easy to work with.[17][18] Expression of eukaryotic proteins in E. coli may be problematic. Sometimes, proteins do not fold properly, which may lead to insolubility, deposition in inclusion bodies, and loss of bioactivity of the product.[19] Though E. coli strains have secretion mechanisms, these are of low efficiency and result in secretion into the periplasmic space, whereas secretion by a Gram-positive bacterium such as a Streptomyces species results in secretion directly into the extracellular medium. In addition, Streptomyces species have more efficient secretion mechanisms than E.coli. The properties of the secretion system is an advantage for industrial production of heterologously expressed protein because it simplifies subsequent purification steps and may increase yield. These properties among others make Streptomyces spp. an attractive alternative to other bacteria such as E. coli and Bacillus subtilis.[19]

Plant pathogenic bacteria

So far, ten species belonging to this genus have been found to be pathogenic to plants:[7]

  1. S. scabiei
  2. S. acidiscabies
  3. S. europaeiscabiei
  4. S. luridiscabiei
  5. S. niveiscabiei
  6. S. puniciscabiei
  7. S. reticuliscabiei
  8. S. stelliscabiei
  9. S. turgidiscabies (scab disease in potatoes)
  10. S. ipomoeae (soft rot disease in sweet potatoes)

Medicine

Streptomyces is the largest antibiotic-producing genus, producing antibacterial, antifungal, and antiparasitic drugs, and also a wide range of other bioactive compounds, such as immunosuppressants.[20] Almost all of the bioactive compounds produced by Streptomyces are initiated during the time coinciding with the aerial hyphal formation from the substrate mycelium.[11]

Antifungals

{{see also|Polyene antimycotic}}

Streptomycetes produce numerous antifungal compounds of medicinal importance, including nystatin (from S. noursei), amphotericin B (from S. nodosus), and natamycin (from S. natalensis).

Antibacterials

Members of the genus Streptomyces are the source for numerous antibacterial pharmaceutical agents; among the most important of these are:

  • Chloramphenicol (from S. venezuelae)[21]
  • Daptomycin (from S. roseosporus)[22]
  • Fosfomycin (from S. fradiae)[23]
  • Lincomycin (from S. lincolnensis)[24]
  • Neomycin (from S. fradiae)[25]
  • Nourseothricin {{citation needed|date= August 2015}}
  • Puromycin (from S. alboniger)[26]
  • Streptomycin (from S. griseus)[27]
  • Tetracycline (from S. rimosus and S. aureofaciens)[28]
  • Oleandomycin (from S. antibioticus)[29][30][31]
  • Tunicamycin (from S. torulosus)[32]
  • Mycangimycin (from Streptomyces sp. SPB74 and S. antibioticus)[33][34]{{Verify source|date=August 2015}}
  • Boromycin (from S. antibioticus)[35]
  • Bambermycin (from S. bambergiensis and S. ghanaensis, the active compound being moenomycins A and C)[36]

Clavulanic acid (from S. clavuligerus) is a drug used in combination with some antibiotics (like amoxicillin) to block and/or weaken some bacterial-resistance mechanisms by irreversible beta-lactamase inhibition.

Novel antiinfectives currently being developed include Guadinomine (from Streptomyces sp. K01-0509),[37] a compound that blocks the Type III secretion system of Gram-negative bacteria.

Antiparasitic drugs

S. avermitilis is responsible for the production of one of the most widely employed drugs against nematode and arthropod infestations, ivermectin.

Other

Less commonly, streptomycetes produce compounds used in other medical treatments: migrastatin (from S. platensis) and bleomycin (from S. verticillus) are antineoplastic (anticancer) drugs; boromycin (from S. antibioticus) exhibits antiviral activity against the HIV-1 strain of HIV, as well as antibacterial activity. Staurosporine (from S. staurosporeus) also has a range of activities from antifungal to antineoplastic (via the inhibition of protein kinases).

S. hygroscopicus and S. viridochromogenes produce the natural herbicide bialaphos.

See also

  • Antimycin A - compound produced by this bacterium used in piscicides
  • Streptomyces isolates

References

1. ^{{cite book |last1=Kämpfer |first1=Peter |year=2006 |chapter=The Family Streptomycetaceae, Part I: Taxonomy |chapterurl=https://books.google.com/books?id=swciHNNWZDEC&pg=PA538 |pages=538–604 |editor1-first=Martin |editor1-last=Dworkin |editor2-first=Stanley |editor2-last=Falkow |editor3-first=Eugene |editor3-last=Rosenberg |editor4-first=Karl-Heinz |editor4-last=Schleifer |editor5-first=Erko |editor5-last=Stackebrandt |title=The Prokaryotes |doi=10.1007/0-387-30743-5_22 |isbn=978-0-387-25493-7}}
2. ^{{cite web |author=Euzéby JP| url=http://www.bacterio.cict.fr/s/streptomycesa.html |title=Genus Streptomyces | work=List of Prokaryotic names with Standing in Nomenclature |year=2008 |accessdate=2008-09-28}}
3. ^{{cite book |veditors=Madigan M, Martinko J | title = Brock Biology of Microorganisms | edition = 11th | publisher = Prentice Hall | year = 2005 | isbn= 978-0-13-144329-7 }}{{page needed|date=October 2014}}
4. ^{{cite book |vauthors=Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA |title=Practical Streptomyces Genetics |edition=2nd |publisher=John Innes Foundation |location=Norwich, England |year=2000 |pages= |isbn=978-0-7084-0623-6}}{{page needed|date=October 2014}}
5. ^Understanding and manipulating antibiotic production in actinomycetes
6. ^{{cite journal |last1=Anderson |first1=AS |last2=Wellington |first2=Elizabeth |year=2001 |title=The taxonomy of Streptomyces and related genera |journal=International Journal of Systematic and Evolutionary Microbiology |volume=51 |issue=3 |pages=797–814 |doi=10.1099/00207713-51-3-797 |pmid=11411701 }}
7. ^{{Cite journal|doi=10.1099/ijs.0.028514-0|title=Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces|year=2010|last1=Labeda|first1=D. P.|journal=International Journal of Systematic and Evolutionary Microbiology|volume=61|issue=10|pages=2525–31 |pmid=21112986}}
8. ^{{Cite journal|doi=10.1099/00207713-47-4-1048|title=A Proposal to Revive the Genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982)|year=1997|last1=Zhang|first1=Z.|last2=Wang|first2=Y.|last3=Ruan|first3=J.|journal=International Journal of Systematic Bacteriology|volume=47|issue=4|pages=1048–54|pmid=9336904}}
9. ^{{Cite journal|doi=10.1023/A:1023397724023|year=2003|last1=Kim|first1=Seung Bum|journal=Antonie van Leeuwenhoek|volume=83|issue=2|pages=107–16|pmid=12785304|last2=Lonsdale|first2=J|last3=Seong|first3=CN|last4=Goodfellow|first4=M|title=Streptacidiphilus gen. Nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997}}
10. ^{{cite journal |last1=Dietz |first1=Alma |last2=Mathews |first2=John |year=1971 |title=Classification of Streptomyces spore surfaces into five groups |journal=Applied Microbiology |volume=21 |issue=3 |pages=527–533 |pmid=4928607 |pmc=377216 }}
11. ^{{cite book |last1= Chater |first1= Keith |editor1-first=Richard |editor1-last= Losick |title= Microbial development|chapter= Morphological and physiological differentiation in Streptomyces|chapter-url=http://cshmonographs.org/index.php/monographs/article/view/4367 |accessdate= 2012-01-19|doi=10.1101/087969172.16.89|year= 1984 |isbn= 978-0-87969-172-1 |pages= 89–115|doi-broken-date= 2019-02-18 }}
12. ^{{cite journal |doi=10.1038/417141a|pmid=12000953|title=Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)|journal=Nature|volume=417|issue=6885|pages=141–7|year=2002|last1=Bentley|first1=S. D.|last2=Chater|first2=K. F.|last3=Cerdeño-Tárraga|first3=A.-M.|last4=Challis|first4=G. L.|last5=Thomson|first5=N. R.|last6=James|first6=K. D.|last7=Harris|first7=D. E.|last8=Quail|first8=M. A.|last9=Kieser|first9=H.|last10=Harper|first10=D.|last11=Bateman|first11=A.|last12=Brown|first12=S.|last13=Chandra|first13=G.|last14=Chen|first14=C. W.|last15=Collins|first15=M.|last16=Cronin|first16=A.|last17=Fraser|first17=A.|last18=Goble|first18=A.|last19=Hidalgo|first19=J.|last20=Hornsby|first20=T.|last21=Howarth|first21=S.|last22=Huang|first22=C.-H.|last23=Kieser|first23=T.|last24=Larke|first24=L.|last25=Murphy|first25=L.|last26=Oliver|first26=K.|last27=O'Neil|first27=S.|last28=Rabbinowitsch|first28=E.|last29=Rajandream|first29=M.-A.|last30=Rutherford|first30=K.|display-authors=29|bibcode=2002Natur.417..141B}}
13. ^{{Cite journal |last1=Chater |first1=Keith F. |last2=Biró |first2=Sandor |last3=Lee |first3=Kye Joon |last4=Palmer |first4=Tracy |last5=Schrempf |first5=Hildgund |year=2010 |title=The complex extracellular biology of Streptomyces |journal=FEMS Microbiology Reviews |volume=34 |issue=2 |pages=171–98 |pmid=20088961 |doi=10.1111/j.1574-6976.2009.00206.x}}
14. ^{{cite journal |doi=10.1038/nbt820|pmid=12692562|title=Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis|journal=Nature Biotechnology|volume=21|issue=5|pages=526–31|year=2003|last1=Ikeda|first1=Haruo|last2=Ishikawa|first2=Jun|last3=Hanamoto|first3=Akiharu|last4=Shinose|first4=Mayumi|last5=Kikuchi|first5=Hisashi|last6=Shiba|first6=Tadayoshi|last7=Sakaki|first7=Yoshiyuki|last8=Hattori|first8=Masahira|last9=Ōmura|first9=Satoshi}}
15. ^{{cite book|author=Paul Dyson|title=Streptomyces: Molecular Biology and Biotechnology|url=https://books.google.com/books?id=3z9_QwFumi8C|accessdate=16 January 2012|date=1 January 2011|publisher=Horizon Scientific Press|isbn=978-1-904455-77-6|page=5}}
16. ^{{cite web|url=http://www.sanger.ac.uk/Projects/S_scabies|title=Streptomyces scabies|publisher=Sanger Institute|accessdate=2001-02-26}}
17. ^{{cite journal |doi=10.1016/0958-1669(91)90033-2|pmid=1367716|title=Streptomyces: A host for heterologous gene expression|journal=Current Opinion in Biotechnology|volume=2|issue=5|pages=674–81|year=1991|last1=Brawner|first1=Mary|last2=Poste|first2=George|last3=Rosenberg|first3=Martin|last4=Westpheling|first4=Janet}}
18. ^{{cite journal |last1=Payne |first1=Gregory F. |last2=Delacruz |first2=Neslihan |last3=Coppella |first3=Steven J. |year=1990 |title=Improved production of heterologous protein from Streptomyces lividans |journal=Applied Microbiology and Biotechnology |volume=33 |issue=4 |pages=395–400 |pmid=1369282 |doi=10.1007/BF00176653}}
19. ^{{cite journal |doi=10.1016/S0167-7799(97)01062-7|pmid=9263479|title=Heterologous biopharmaceutical protein expression in Streptomyces|journal=Trends in Biotechnology|volume=15|issue=8|pages=315–20|year=1997|last1=Binnie|first1=Craig|last2=Douglas Cossar|first2=J.|last3=Stewart|first3=Donald I.H.}}
20. ^{{cite journal |doi=10.1007/s002030100345|pmid=11702082|title=How many antibiotics are produced by the genus Streptomyces ?|journal=Archives of Microbiology|volume=176|issue=5|pages=386–90|year=2001|last1=Watve|first1=Milind|last2=Tickoo|first2=Rashmi|last3=Jog|first3=Maithili|last4=Bhole|first4=Bhalachandra}}
21. ^{{cite journal|doi=10.1099/00221287-90-2-336|title=A Plasmid Involved in Chloramphenicol Production in Streptomyces venezuelae: Evidence from Genetic Mapping|year=1975|last1=Akagawa|first1=H.|last2=Okanishi|first2=M.|last3=Umezawa|first3=H.|journal=Journal of General Microbiology|volume=90|issue=2|pages=336–46|pmid=1194895}}
22. ^{{cite journal|doi=10.1099/mic.0.27757-0|title=Daptomycin biosynthesis in Streptomyces roseosporus: Cloning and analysis of the gene cluster and revision of peptide stereochemistry|year=2005|last1=Miao|first1=V.|journal=Microbiology|volume=151|issue=5|pages=1507–23|pmid=15870461}}
23. ^{{cite journal |doi=10.1016/j.chembiol.2006.09.007|title=Heterologous Production of Fosfomycin and Identification of the Minimal Biosynthetic Gene Cluster|journal=Chemistry & Biology|volume=13|issue=11|pages=1171–82|year=2006|last1=Woodyer|first1=Ryan D.|last2=Shao|first2=Zengyi|last3=Thomas|first3=Paul M.|last4=Kelleher|first4=Neil L.|last5=Blodgett|first5=Joshua A.V.|last6=Metcalf|first6=William W.|last7=Van Der Donk|first7=Wilfred A.|last8=Zhao|first8=Huimin|pmid=17113999}}
24. ^{{cite journal|doi=10.1111/j.1365-2958.1995.tb02338.x|title=Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11|year=1995|last1=Peschke|first1=Ursula|last2=Schmidt|first2=Heike|last3=Zhang|first3=Hui-Zhan|last4=Piepersberg|first4=Wolfgang|journal=Molecular Microbiology|volume=16|issue=6|pages=1137–56|pmid=8577249}}
25. ^{{cite journal|author=Howard T. Dulmage |title=The Production of Neomycin by Streptomyces fradiae in Synthetic Media |journal=Applied Microbiology |volume=1 |issue=2 |date=March 1953 |pages=103–106 |pmc=1056872 |pmid=13031516}}
26. ^{{cite journal |doi=10.1128/AAC.8.6.721|pmid=1211926|title=Biosynthesis of Puromycin in Streptomyces alboniger: Regulation and Properties of O-Demethylpuromycin O-Methyltransferase|journal=Antimicrobial Agents and Chemotherapy|volume=8|issue=6|pages=721–32|year=1975|last1=Sankaran|first1=L.|last2=Pogell|first2=B. M.|pmc=429454}}
27. ^{{cite journal|doi=10.1093/nar/15.19.8041|title=Gene cluster for streptomycin biosynthesis inStreptomyces griseus: Nucleotide sequence of three genes and analysis of transcriptional activity|year=1987|last1=Distler|first1=Jürgen|last2=Ebert|first2=Andrea|last3=Mansouri|first3=Kambiz|last4=Pissowotzki|first4=Klaus|last5=Stockmann|first5=Michael|last6=Piepersberg|first6=Wolfgang|journal=Nucleic Acids Research|volume=15|issue=19|pages=8041–56|pmid=3118332|pmc=306325}}
28. ^{{cite book|author1=Dr. Mark Nelson|author2=Robert A. Greenwald|author3=Wolfgang Hillen|author4=Mark L. Nelson|title=Tetracyclines in biology, chemistry and medicine|url=https://books.google.com/books?id=kHNW4tFhZD4C&pg=PA8|accessdate=17 January 2012|year=2001|publisher=Birkhäuser|isbn=978-3-7643-6282-9|pages=8–}}
29. ^{{cite web|title=What are Streptomycetes?|url=http://home.hiroshima-u.ac.jp/mbiotech/hosenkin_lab/Strepto-E.html|website=Hosenkin Lab; Hiroshima-University|accessdate=10 August 2015}}
30. ^{{cite journal|last1=Swan|first1=David G.|last2=Rodríguez|first2=Ana M.|last3=Vilches|first3=Carmen|last4=Méndez|first4=Carmen|last5=Salas|first5=José A.|title=Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence|journal=MGG Molecular & General Genetics|date=1994|volume=242|issue=3|doi=10.1007/BF00280426|issn=1432-1874|pages=358–362}}
31. ^{{cite web|title= Finto: MeSH: Streptomyces antibioticus|url=http://finto.fi/mesh/en/page/D013303|website=finto: Finnish Thesaurus and Ontology Service|accessdate=10 August 2015}}
32. ^{{cite journal|last1=Atta|first1=Houssam M.|title=Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties|journal=Journal of Saudi Chemical Society|date=January 2015|volume=19|issue=1|pages=12–22|doi=10.1016/j.jscs.2011.12.011}}
33. ^{{cite journal|last1=Oh|first1=Dong-Chan|last2=Scott|first2=Jarrod J.|last3=Currie|first3=Cameron R.|last4=Clardy|first4=Jon|title=Mycangimycin, a Polyene Peroxide from a Mutualist sp.|journal=Organic Letters|date=5 February 2009|volume=11|issue=3|pages=633–636|doi=10.1021/ol802709x|pmid=19125624|pmc=2640424}}
34. ^{{cite journal|last1=Atta|first1=Houssam M.|title=Production, Purification, Physico-Chemical Characteristics and Biological Activities of Antifungal Antibiotic Produced by Streptomyces antibioticus, AZ-Z710|journal=American-Eurasian Journal of Scientific Research|date=2010|volume=5|issue=1|page=39|url=http://www.idosi.org/aejsr/5(1)10/7.pdf|accessdate=11 August 2015|issn=1818-6785}}
35. ^{{cite journal|last1=Chen|first1=Tom S. S.|last2=Chang|first2=Ching-Jer|last3=Floss|first3=Heinz G.|title=Biosynthesis of boromycin|journal=The Journal of Organic Chemistry|date=June 1981|volume=46|issue=13|pages=2661–2665|doi=10.1021/jo00326a010}}
36. ^National Center for Biotechnology Information. PubChem Compound Database; CID=53385491, https://pubchem.ncbi.nlm.nih.gov/compound/53385491 (accessed Mar. 8, 2017).
37. ^{{Cite journal |doi=10.1021/ja308622d|pmid=23030602|title=Molecular Insights into the Biosynthesis of Guadinomine: A Type III Secretion System Inhibitor|journal=Journal of the American Chemical Society|volume=134|issue=42|pages=17797–806|year=2012|last1=Holmes|first1=Tracy C.|last2=May|first2=Aaron E.|last3=Zaleta-Rivera|first3=Kathia|last4=Ruby|first4=J. Graham|last5=Skewes-Cox|first5=Peter|last6=Fischbach|first6=Michael A.|last7=Derisi|first7=Joseph L.|last8=Iwatsuki|first8=Masato|last9=o̅Mura|first9=Satoshi|last10=Khosla|first10=Chaitan|pmc=3483642}}

Further reading

  • {{cite book | author = Baumberg S | title = Genetics and Product Formation in Streptomyces | publisher = Kluwer Academic | year = 1991 | isbn= 978-0-306-43885-1 }}
  • {{cite book | author = Gunsalus IC | title = Bacteria: Antibiotic-producing Streptomyces | publisher = Academic Press | year = 1986 | isbn= 978-0-12-307209-2 | authorlink = Irwin Gunsalus }}
  • {{cite book | author = Hopwood DA | title = Streptomyces in Nature and Medicine: The Antibiotic Makers | publisher = Oxford University Press | year = 2007 | isbn= 978-0-19-515066-7 }}
  • {{cite book | editor = Dyson P | title = Streptomyces: Molecular Biology and Biotechnology | publisher = Caister Academic Press | year = 2011 | isbn= 978-1-904455-77-6 }}

External links

  • Current research on Streptomyces coelicolor at the Norwich Research Park
  • Some current Streptomyces Research & Methods / Protocols / Resources
  • S. avermitilis genome homepage (Kitasato Institute for Life Sciences)
  • S. coelicolor A3(2) genome homepage (Sanger Institute)
  • Streptomyces.org.uk homepage ([https://web.archive.org/web/20050408080136/http://www.jic.bbsrc.ac.uk/ John Innes Centre])
  • StrepDB - the Streptomyces genomes annotation browser
  • Streptomyces Genome Projects from Genomes OnLine Database
{{Taxonbar|from=Q1144013}}

2 : Streptomyces|Bacteria genera

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 4:43:30