词条 | Streptomycin |
释义 |
| Verifiedfields = changed | verifiedrevid = 470471096 | IUPAC_name = 5-(2,4-diguanidino- 3,5,6-trihydroxy-cyclohexoxy)- 4-[4,5-dihydroxy-6-(hydroxymethyl) -3-methylamino-tetrahydropyran-2-yl] oxy-3-hydroxy-2-methyl -tetrahydrofuran-3-carbaldehyde | image = Streptomycin2.svg | width = 209 | image2 = Streptomycin-1ntb-xtal-3D-balls.png | Drugs.com = {{drugs.com|monograph|streptomycin-sulfate}} | pregnancy_US = D | legal_UK = POM | legal_US = Rx-only | routes_of_administration = intramuscular, intravenous | bioavailability = 84% to 88% IM (est.)[1] | elimination_half-life = 5 to 6 hours | excretion = kidney | CAS_number_Ref = {{cascite|correct|CAS}} | CAS_number = 57-92-1 | ATC_prefix = A07 | ATC_suffix = AA04 | ATC_supplemental = {{ATC|J01|GA01}} | PubChem = 19649 | DrugBank_Ref = {{drugbankcite|correct|drugbank}} | DrugBank = DB01082 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 18508 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = Y45QSO73OB | KEGG_Ref = {{keggcite|correct|kegg}} | KEGG = D08531 | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 17076 | ChEMBL_Ref = {{ebicite|changed|EBI}} | ChEMBL = 1201194 | NIAID_ChemDB = 07346 | PDB_ligand = SRY | C=21 | H=39 | N=7 | O=12 | molecular_weight = 581.574 g/mol | smiles = C[C@H]1[C@@]([C@H]([C@@H](O1)O[C@@H]2[C@H]([C@@H]([C@H]([C@@H]([C@H]2O)O)N=C(N)N)O)N=C(N)N)O[C@H]3[C@H]([C@@H]([C@H]([C@@H](O3)CO)O)O)NC)(C=O)O | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C21H39N7O12/c1-5-21(36,4-30)16(40-17-9(26-2)13(34)10(31)6(3-29)38-17)18(37-5)39-15-8(28-20(24)25)11(32)7(27-19(22)23)12(33)14(15)35/h4-18,26,29,31-36H,3H2,1-2H3,(H4,22,23,27)(H4,24,25,28)/t5-,6-,7+,8-,9-,10-,11+,12-,13-,14+,15+,16-,17-,18-,21+/m0/s1 | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = UCSJYZPVAKXKNQ-HZYVHMACSA-N | melting_point = 12 }}Streptomycin is an antibiotic used to treat a number of bacterial infections.[2] This includes tuberculosis, Mycobacterium avium complex, endocarditis, brucellosis, Burkholderia infection, plague, tularemia, and rat bite fever.[2] For active tuberculosis it is often given together with isoniazid, rifampicin, and pyrazinamide.[1] It is given by injection into a vein or muscle.[2] Common side effects include feeling like the world is spinning, vomiting, numbness of the face, fever, and rash.[2] Use during pregnancy may result in permanent deafness in the developing baby.[2] Use appears to be safe while breastfeeding.[1] It is not recommended in people with myasthenia gravis or other neuromuscular disorders.[1] Streptomycin is an aminoglycoside.[2] It works by blocking the ability of 30S ribosomal subunits to make proteins, which results in bacterial death.[2] Streptomycin was discovered in 1943 from Streptomyces griseus.[3][4] It is on the World Health Organization's List of Essential Medicines, which lists the most effective and safe medicines needed in a health system.[5] The wholesale cost in the developing world is between US$0.38 and $4.39 per day.[6] In the United States, a course of treatment costs more than $200.[7] UsesMedication
Streptomycin is traditionally given intramuscularly, and in many nations is only licensed to be administered intramuscularly, though in some regions the drug may also be administered intravenously.[9] PesticideStreptomycin also is used as a pesticide, to combat the growth of bacteria beyond human applications. Streptomycin controls bacterial diseases of certain fruit, vegetables, seed, and ornamental crops. A major use is in the control of fireblight on apple and pear trees. As in medical applications, extensive use can be associated with the development of resistant strains. Streptomycin could potentially be used to control cyanobacterial blooms in ornamental ponds and aquaria.[10] While some antibacterial antibiotics are inhibitory to certain eukaryotes, this seems not to be the case for streptomycin, especially in the case of anti-fungal activity.[11] Cell cultureStreptomycin, in combination with penicillin, is used in a standard antibiotic cocktail to prevent bacterial infection in cell culture.{{cn|date=October 2018}} Protein purificationWhen purifying protein from a biological extract, streptomycin sulfate is sometimes added as a means of removing nucleic acids. Since it binds to ribosomes and precipitates out of solution, it serves as a method for removing rRNA, mRNA, and even DNA if the extract is from a prokaryote.{{cn|date=October 2018}} Spectrum of activityStreptomycin can be used clinically to treat tuberculosis in combination with other medications and susceptible strains which cause bacterial endocarditis.{{cn|date=October 2018}} Side effectsThe most concerning side effects, as with other aminoglycosides, are kidney toxicity and ototoxicity.[12] Transient or permanent deafness may result. The vestibular portion of cranial nerve VIII (the vestibulocochlear nerve) can be affected, resulting in tinnitus, vertigo, ataxia, kidney toxicity, and can potentially interfere with diagnosis of kidney malfunction.[13] Common side effects include vertigo, vomiting, numbness of the face, fever, and rash. Fever and rashes may result from persistent use.{{cn|date=October 2018}} Use is not recommended during pregnancy.[2] Congenital deafness has been reported in children whose mothers received streptomycin during pregnancy.[2] Use appears to be okay while breastfeeding.[1] It is not recommended in people with myasthenia gravis.[1] Mechanism of actionStreptomycin is a protein synthesis inhibitor. It binds to the small 16S rRNA of the 30S subunit of the bacterial ribosome, interfering with the binding of formyl-methionyl-tRNA to the 30S subunit.[14] This leads to codon misreading, eventual inhibition of protein synthesis and ultimately death of microbial cells through mechanisms that are still not understood. Speculation on this mechanism indicates that the binding of the molecule to the 30S subunit interferes with 50S subunit association with the mRNA strand. This results in an unstable ribosomal-mRNA complex, leading to a frameshift mutation and defective protein synthesis; leading to cell death.[15] Humans have ribosomes which are structurally different from those in bacteria, so the drug does not have this effect in human cells. At low concentrations, however, streptomycin only inhibits growth of the bacteria by inducing prokaryotic ribosomes to misread mRNA.[16] Streptomycin is an antibiotic that inhibits both Gram-positive and Gram-negative bacteria,[17] and is therefore a useful broad-spectrum antibiotic. HistoryStreptomycin was first isolated on October 19, 1943, by Albert Schatz, a PhD student in the laboratory of Selman Abraham Waksman at Rutgers University in a research project funded by Merck and Co.[18][19] Waksman and his laboratory staff discovered several antibiotics, including actinomycin, clavacin, streptothricin, streptomycin, grisein, neomycin, fradicin, candicidin, and candidin. Of these, streptomycin and neomycin found extensive application in the treatment of numerous infectious diseases. Streptomycin was the first antibiotic cure for tuberculosis (TB). In 1952 Waksman was the recipient of the Nobel Prize in Physiology or Medicine in recognition "for his discovery of streptomycin, the first antibiotic active against tuberculosis".[20] Waksman was later accused of playing down the role of Schatz who did the work under his supervision.[21][22][23][24] The Rutgers team reported streptomycin in the medical literature in January 1944.[25] Within months they began working with William Feldman and H. Corwin Hinshaw of the Mayo Clinic with hopes of starting a human clinical trial of streptomycin in tuberculosis.[26]{{rp|209–241}} The difficulty at first was even producing enough streptomycin to do a trial, because the research laboratory methods of creating small batches had not yet been translated to commercial large-batch production. They managed to do an animal study in a few guinea pigs with just 10 grams of the scarce drug, demonstrating survival.[26]{{rp|209–241}} This was just enough evidence to get Merck & Co. to divert some resources from the young penicillin production program to start work toward streptomycin production.[26]{{rp|209–241}} At the end of World War II, the United States Army experimented with streptomycin to treat life-threatening infections at a military hospital in Battle Creek, Michigan. The first patient treated did not survive; the second patient survived but became blind as a side effect of the treatment. In March 1946, the third patient—Robert J. Dole, later Majority Leader of the United States Senate and Presidential nominee—experienced a rapid and robust recovery.[27] The first randomized trial of streptomycin against pulmonary tuberculosis was carried out in 1946 through 1948 by the MRC Tuberculosis Research Unit under the chairmanship of Geoffrey Marshall (1887–1982). The trial was neither double-blind nor placebo-controlled.[44] It is widely accepted to have been the first randomised curative trial.[28] Results showed efficacy against TB, albeit with minor toxicity and acquired bacterial resistance to the drug.[29] New JerseyBecause streptomycin was isolated from a microbe discovered on New Jersey soil, and because of its activity against tuberculosis and Gram negative organisms, and in recognition of both the microbe and the antibiotic in the history of New Jersey, S. griseus was nominated as the Official New Jersey state microbe. The draft legislation was submitted by Senator Sam Thompson (R-12) in May 2017 as bill S3190 and Assemblywoman Annette Quijano (D-20) in June 2017 as bill A31900.[30][31] See also
References1. ^1 2 3 4 {{cite book|title=WHO Model Formulary 2008|date=2009|publisher=World Health Organization|isbn=9789241547659|pages=136, 144, 609|url=http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|accessdate=December 8, 2016|deadurl=no|archiveurl=https://web.archive.org/web/20161213060118/http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|archivedate=December 13, 2016|df=}} 2. ^1 2 3 4 5 6 7 8 9 {{cite web|title=Streptomycin Sulfate|url=https://www.drugs.com/monograph/streptomycin-sulfate.html|publisher=The American Society of Health-System Pharmacists|accessdate=December 8, 2016|deadurl=no|archiveurl=https://web.archive.org/web/20161220231114/https://www.drugs.com/monograph/streptomycin-sulfate.html|archivedate=December 20, 2016|df=}} 3. ^{{cite book|last1=Torok|first1=Estee|last2=Moran|first2=Ed|last3=Cooke|first3=Fiona|title=Oxford Handbook of Infectious Diseases and Microbiology|date=2009|publisher=OUP Oxford|isbn=9780191039621|page=Chapter 2|url=https://books.google.com/books?id=5W-WBQAAQBAJ&pg=PT56|language=en|deadurl=no|archiveurl=https://web.archive.org/web/20170908143257/https://books.google.com/books?id=5W-WBQAAQBAJ&pg=PT56|archivedate=September 8, 2017|df=}} 4. ^{{cite book|last1=Renneberg|first1=Reinhard|last2=Demain|first2=Arnold L.|title=Biotechnology for Beginners|date=2008|publisher=Elsevier|isbn=9780123735812|page=103|url=https://books.google.com/books?id=lDYL6793vMkC&pg=PA103|language=en|deadurl=no|archiveurl=https://web.archive.org/web/20170910172645/https://books.google.com/books?id=lDYL6793vMkC&pg=PA103|archivedate=September 10, 2017|df=}} 5. ^{{cite web|title=WHO Model List of Essential Medicines (19th List)|url=http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1|work=World Health Organization|accessdate=December 8, 2016|date=April 2015|deadurl=no|archiveurl=https://web.archive.org/web/20161213052708/http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1|archivedate=December 13, 2016|df=}} 6. ^{{cite web|title=Streptomycin Sulfate |url=http://mshpriceguide.org/en/single-drug-information/?DMFId=735&searchYear=2014|website=International Drug Price Indicator Guide|accessdate=December 8, 2016}} 7. ^{{cite book|last1=Hamilton|first1=Richart|title=Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition|date=2015|publisher=Jones & Bartlett Learning|isbn=9781284057560|page=36}} 8. ^{{cite book|title=WHO Model Formulary 2008|date=2009|publisher=World Health Organization|isbn=9789241547659|pages=136, 144, 609|url=http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|accessdate=December 8, 2016|deadurl=no|archiveurl=https://web.archive.org/web/20161213060118/http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|archivedate=December 13, 2016|df=}} 9. ^1 {{cite journal | vauthors = Zhu M, Burman WJ, Jaresko GS, Berning SE, Jelliffe RW, Peloquin CA | date = October 2001 | title = Population pharmacokinetics of intravenous and intramuscular streptomycin in patients with tuberculosis | journal = Pharmacotherapy | volume = 21 | issue = 9 | pages = 1037–1045 | pmid = 11560193 | doi = 10.1592/phco.21.13.1037.34625 | url = http://www.medscape.com/viewarticle/409778 | accessdate = May 25, 2010 | deadurl = no | archiveurl = https://web.archive.org/web/20111005005316/http://www.medscape.com/viewarticle/409778 | archivedate = October 5, 2011 | df = }} 10. ^{{cite journal | vauthors = Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z | title = Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa | journal = Environ. Toxicol. | volume = 27 | issue = 4 | pages = 229–37 | date = March 2012 | pmid = 20725941 | doi = 10.1002/tox.20636 }} 11. ^{{cite journal | vauthors = Reilly HC, Schatz A, Waksman SA | title = Antifungal Properties of Antibiotic Substances | journal = J. Bacteriol. | volume = 49 | issue = 6 | pages = 585–94 | date = June 1945 | pmid = 16560957 | pmc = 374091 }} 12. ^{{cite journal | vauthors = Prayle A, Watson A, Fortnum H, Smyth A | title = Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis | journal = Thorax | volume = 65 | issue = 7 | pages = 654–8 | date = July 2010 | pmid = 20627927 | pmc = 2921289 | doi = 10.1136/thx.2009.131532 }} 13. ^{{cite journal|vauthors=Syal K, Srinivasan A, Banerjee D |title=Streptomycin interference in Jaffe reaction — Possible false positive creatinine estimation in excessive dose exposure |journal=Clinical Biochemistry |volume=46 |issue=1–2 |pages=177–179|date=2013 |doi=10.1016/j.clinbiochem.2012.10.031|pmid=23123914 }} 14. ^{{cite journal|vauthors=Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R | date = December 7, 2007| title = Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome| journal = Journal of Molecular Biology| volume =374| pmid=17967466| issue = 4| pages = 1065–76| doi = 10.1016/j.jmb.2007.10.003| pmc = 2200631}} 15. ^{{cite book|last=Raymon|first=Lionel P.|title=COMLEX Level 1 Pharmacology Lecture Notes|year=2011|publisher=Kaplan, Inc.|location=Miami, FL|id=CM4024K|pages=181}} 16. ^{{cite book|author1=Voet, Donald |author2=Voet, Judith G. |lastauthoramp=yes | title = Biochemistry| edition = 3rd| publisher = John Wiley & Sons| page = 1341| year = 2004| isbn = 978-0-471-19350-0 }} 17. ^{{cite book|title=A manual for primary human cell culture|year=2004|publisher=World Scientific|author=Jan-Thorsten Schantz|author2=Kee-Woei Ng |page=89}} 18. ^{{cite journal| author = Comroe JH Jr| title = Pay dirt: the story of streptomycin. Part I: from Waksman to Waksman| journal = American Review of Respiratory Disease| year = 1978| volume = 117| issue = 4| pages = 773–781| pmid = 417651| doi=10.1164/arrd.1978.117.4.773| doi-broken-date = 2019-02-15}} 19. ^{{cite journal |author=Kingston W |title=Streptomycin, Schatz v. Waksman, and the balance of credit for discovery |journal=J Hist Med Allied Sci |volume=59 |issue=3 |pages=441–62 | date=July 2004 |pmid=15270337 |doi= 10.1093/jhmas/jrh091|url=}} 20. ^[https://www.nobelprize.org/nobel_prizes/medicine/laureates/index.html Official list of Nobel Prize Laureates in Medicine] {{webarchive|url=https://web.archive.org/web/20170609092934/http://www.nobelprize.org/nobel_prizes/medicine/laureates/index.html |date=June 9, 2017 }} 21. ^{{cite book|url=https://books.google.com/books?id=dRWLQgAACAAJ|title=Miracle Cure: The Story of Penicillin and the Golden Age of Antibiotics|date=1990|publisher=Blackwell|isbn=9780631164920|author=Wainwright, M.|accessdate=December 29, 2014|deadurl=no|archiveurl=https://web.archive.org/web/20170910172645/https://books.google.com/books?id=dRWLQgAACAAJ|archivedate=September 10, 2017|df=}} 22. ^{{cite journal | vauthors = Wainwright M | title = Streptomycin: discovery and resultant controversy | journal = Hist Philos Life Sci | volume = 13 | issue = 1 | pages = 97–124 | date = 1991 | pmid = 1882032 }} 23. ^{{Cite journal|last=Kingston|first=William|date=July 1, 2004|title=Streptomycin, Schatz v. Waksman, and the balance of credit for discovery|journal=Journal of the History of Medicine and Allied Sciences|volume=59|issue=3|pages=441–462|issn=0022-5045|pmid=15270337|doi=10.1093/jhmas/jrh091}} 24. ^{{Cite book|title=Experiment Eleven: Dark Secrets Behind the Discovery of a Wonder Drug|last=Pringle|first=Peter|publisher=Walker & Company|year=2012|isbn=978-1620401989|location=New York|pages=|quote=|via=}} 25. ^{{Citation |last=Schatz |first=Albert |last2=Bugle |first2=Elizabeth |last3=Waksman |first3=Selman A. |year=1944 |title=Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria |journal=Experimental Biology and Medicine |volume=55 |pages=66–69 |doi=10.3181/00379727-55-14461 |postscript=.}} 26. ^1 2 {{cite book | last = Ryan | first = Frank | year = 1993 | title = The forgotten plague: how the battle against tuberculosis was won—and lost | publisher = Little, Brown | location = Boston | isbn = 978-0316763806 }} 27. ^Cramer, Richard Ben, What It Takes (New York, 1992), pp. 110-11. 28. ^{{cite journal |author=Metcalfe NH |title=Sir Geoffrey Marshall (1887-1982): respiratory physician, catalyst for anaesthesia development, doctor to both Prime Minister and King, and World War I Barge Commander |journal=J Med Biogr |volume=19 |issue=1 |pages=10–4 |date=February 2011 |pmid=21350072 |doi=10.1258/jmb.2010.010019 }} 29. ^1 {{cite journal | vauthors = D'Arcy Hart P | title = A change in scientific approach: from alternation to randomised allocation in clinical trials in the 1940s | journal = BMJ | volume = 319 | issue = 7209 | pages = 572–3 | date = August 1999 | pmid = 10463905 | pmc = 1116443 |doi=10.1136/bmj.319.7209.572}} 30. ^{{Cite news|url=https://legiscan.com/NJ/bill/S3190/2016|title=New Jersey S3190 {{!}} 2016-2017 {{!}} Regular Session|work=LegiScan|access-date=November 29, 2017|language=en}} 31. ^{{Cite news|url=https://legiscan.com/NJ/bill/A4900/2016|title=New Jersey A4900 {{!}} 2016-2017 {{!}} Regular Session|work=LegiScan|access-date=November 29, 2017|language=en}} Further reading
5 : Aminoglycoside antibiotics|Anti-tuberculosis drugs|World Health Organization essential medicines|Guanidines|RTT |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。