词条 | Pillai's arithmetical function |
释义 |
In number theory, the gcd-sum function,[1] also called Pillai's arithmetical function,[1] is defined for every by or equivalently[1] where is a divisor of and is Euler's totient function. it also can be written as[2] where, is the Divisor function, and is the Möbius function. This multiplicative arithmetical function was introduced by the Indian mathematician Subbayya Sivasankaranarayana Pillai in 1933.[3] [4]References1. ^1 2 {{cite journal |author=Lászlo Tóth |title=A survey of gcd-sum functions |journal=J. Integer Sequences |volume=13 |year=2010}} {{oeis|A018804}}2. ^http://math.stackexchange.com/questions/135351/sum-of-gcdk-n 3. ^{{cite journal |author=S. S. Pillai |title=On an arithmetic function |journal=Annamalai University Journal |volume=II |year=1933 |pages=242–248}} 4. ^{{cite journal |last1=Broughan |first1=Kevin |title=The gcd-sum function |journal=Journal of Integer Sequences |date=2002 |volume=4 |issue=Article 01.2.2 |pages=1-19 }} 1 : Arithmetic functions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。