词条 | Posetal category |
释义 |
In mathematics, a posetal category, or thin category,[1] is a category whose homsets each contain at most one morphism. As such, a posetal category amounts to a preordered class (or a preordered set, if its objects form a set). As suggested by the name, the further requirement that the category be skeletal is often assumed for the definition of "posetal"; in the case of a category that is posetal, being skeletal is equivalent to the requirement that the only isomorphisms are the identity morphisms, equivalently that the preordered class satisfies antisymmetry and hence, if a set, is a poset. All diagrams commute in a posetal category. When the commutative diagrams of a category are interpreted as a typed equational theory whose objects are the types, a codiscrete posetal category corresponds to an inconsistent theory understood as one satisfying the axiom x = y at all types. Viewing a 2-category as an enriched category whose hom-objects are categories, the hom-objects of any extension of a posetal category to a 2-category having the same 1-cells are monoids. Some lattice-theoretic structures are definable as posetal categories of a certain kind, usually with the stronger assumption of being skeletal. For example, a poset may be defined as a posetal category, a distributive lattice as a posetal distributive category, a Heyting algebra as a posetal finitely cocomplete cartesian closed category, and a Boolean algebra as a posetal finitely cocomplete *-autonomous category. Conversely, categories, distributive categories, finitely cocomplete cartesian closed categories, and finitely cocomplete *-autonomous categories can be considered the respective categorifications of posets, distributive lattices, Heyting algebras, and Boolean algebras. References1. ^{{nlab|id=thin+category|title=Thin category}} 1 : Category theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。