释义 |
- Images
- Related polyhedra and tiling
- See also
- References
- External links
Quarter order-6 square tiling | Poincaré disk model of the hyperbolic plane | Type | Hyperbolic uniform tiling | Vertex figure | 3.4.6.6.4 | Schläfli symbol | q{4,6} | Coxeter diagram | node_h1|6|node|4|node_h1}} = {{CDD|branch_10ru|split2-44|node_h1}} = {{CDD|node_h1|split1-66|nodes_10lu}} = {{CDD|branch_10|2a2b-cross|branch_11}} or {{CDD|branch_01|2a2b-cross|branch_11}} or {{CDD|branch_11|2a2b-cross|branch_10}} or {{CDD|branch_11|2a2b-cross|branch_01}} | Dual | ? | Properties | Vertex-transitive |
In geometry, the quarter order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of q{4,6}. It is constructed from *3232 orbifold notation, and can be seen as a half symmetry of *443 and *662, and quarter symmetry of *642. Images Projections centered on a vertex, triangle and hexagon: Related polyhedra and tiling {{Order 3-2-3-2 tiling table}}{{Order 4-4-3 tiling table}}See also- Square tiling
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes
References- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
External links - {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
{{Tessellation}} 5 : Hyperbolic tilings|Isogonal tilings|Order-6 tilings|Square tilings|Uniform tilings |