请输入您要查询的百科知识:

 

词条 Reciprocating electric motor
释义

  1. History

  2. Design

  3. Applications

     Linear compressors  Pumps  Electric shavers  Toys 

  4. See also

  5. References

A reciprocating electric motor is a motor in which the armature moves back and forth rather than circularly. Early electric motors were sometimes of the reciprocating type, such as those made by Daniel Davis in the 1840s.[1] Today, reciprocating electric motors are rare but they do have some niche applications, e.g. in linear compressors for cryogenics[2][3] and as educational toys.[4]

History

Daniel Davis[5] was an early maker of reciprocating electric motors.[6]

As can be seen in these examples, early motors of this type often followed the general layout of the steam engines of the day,

simply replacing the piston-and-cylinder with an electromagnetic solenoid.

Design

{{refimprove section|date=March 2015}}

A reciprocating electric motor uses an alternating magnetic field to move its armature back and forth, rather than circularly as in a conventional electric motor. A single field coil may be placed at one end of the armature's possible movement, or a field coil may be used at each end.

The armature may be a permanent magnet, in which case the coil or coils can exert both repulsive and attractive force on the armature. If there are two coils, they will be wound and connected so that their like poles face each other, so that when (for example) the poles facing the armature are both negative, one pole will attract the armature's south pole while the other will repel its north pole. When the armature reaches the extreme of its movement, polarity to the coils is reversed.

The armature may instead be made of ferromagnetic material, as in an electromagnetic solenoid. In this case the current in the coils will alternate between on and off, rather than between polarities. A single-coil motor with a non-magnetic armature would require a spring or some other "return" mechanism to move the armature away from the coil upon completion of the "attract" cycle. An "interrupter"-style electromechanical buzzer operates on this same principle. A dual-coil motor would alternately energize the two coils. Where the motor is adapted to produce rotary motion, the return mechanism consists of a crankshaft and flywheel.

This is an extremely simple motor, such that demonstration models may be easily constructed for teaching purposes.[4] As a practical motor it has several disadvantages. Magnetic field strength drops off rapidly with increasing distance. In the reciprocating electric motor the distance between armature and field coil must necessarily increase considerably over its minimum value; this reduces the motor's output power and starting force. Vibration is also an issue.

Applications

Linear compressors

A design for a linear compressor of this type has been produced by the Cryogenic Engineering Group at the University of Oxford.[7][8]

Pumps

See Plunger pump

Electric shavers

Some electric shavers use reciprocating motors.[9]

Toys

Educational toys can be built as DIY projects.[4] Some of them have even been patented (for e.g. one in 1929,[10] an other in 1963[11]).

See also

{{commons category|Reciprocating electric motor}}
  • Reciprocating engine

References

1. ^{{cite web|url=http://www.sparkmuseum.com/MOTORS.HTM|title=Motors|work=sparkmuseum.com|accessdate=30 March 2015}}
2. ^{{cite web|url=http://www.eng.ox.ac.uk/cryogenics/publications/abstracts/Preprint_ValvedComp.pdf/view|title=Preprint valved linear compressor|work=ox.ac.uk|accessdate=30 March 2015}}
3. ^{{cite web|url=http://www.hymatic.co.uk/stirling.cryocooler.tp1.htm|title=ABSTRACT|work=hymatic.co.uk|accessdate=30 March 2015}}
4. ^"WONDERMAGNET.COM{{snd}} NdFeB Magnets, Magnet Wire, Books, Weird Science, Needful Things". wondermagnet.com. Retrieved on 31 March 2015.
5. ^{{cite web|url=http://www.princetonmahistory.org/people-groups/residents/daniel-davis|title=Daniel Davis – PHS|work=princetonmahistory.org|accessdate=31 March 2015}}
6. ^{{cite web|url=http://physics.kenyon.edu/EarlyApparatus/Daniel_Davis_Apparatus/Reciprocating_Armature_Engine/Reciprocating_Armature_Engine.html|title=Reciprocating Armature Engine|work=kenyon.edu |accessdate=31 March 2015}}
7. ^{{cite web|url=http://www.eng.ox.ac.uk/cryogenics/publications/abstracts/Preprint_ValvedComp.pdf/view|title=Preprint valved linear compressor|work=ox.ac.uk|accessdate=31 March 2015}}
8. ^{{cite web|url=http://www.hymatic.co.uk/stirling.cryocooler.tp1.htm|title=ABSTRACT|work=hymatic.co.uk|accessdate=31 March 2015}}
9. ^{{cite web|url=http://www.bbc.co.uk/education/clips/zvnw2hv|title=BBC Bitesize – GCSE Product Design – How does an electric shaver work?|work=bbc.co.uk|accessdate=30 March 2015}}
10. ^Patent US1721447
11. ^Patent US3105162
{{Piston engine configurations |expanded}}{{electromagnetism-stub}}

2 : Electric motors|Linear motion

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 21:00:40