释义 |
- Rectified 10-cube Alternate names Cartesian coordinates Images
- Birectified 10-cube Alternate names Cartesian coordinates Images
- Trirectified 10-cube Alternate names Cartesian coordinates Images
- Quadrirectified 10-cube Alternate names Cartesian coordinates Images
- Notes
- References
- External links
10-orthoplex {{CDD>node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}} | Rectified 10-orthoplex {{CDD>node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}} | Birectified 10-orthoplex {{CDD>node|4|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}} | Trirectified 10-orthoplex {{CDD>node|4|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}} | Quadirectified 10-orthoplex {{CDD>node|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}} | Quadrirectified 10-cube {{CDD>node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} | Trirectified 10-cube {{CDD>node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} | Birectified 10-cube {{CDD>node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | Rectified 10-cube {{CDD>node|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | 10-cube {{CDD>node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | Orthogonal projections in BC10 Coxeter plane |
---|
In ten-dimensional geometry, a rectified 10-cube is a convex uniform 10-polytope, being a rectification of the regular 10-cube. There are 10 rectifications of the 10-cube, with the zeroth being the 10-cube itself. Vertices of the rectified 10-cube are located at the edge-centers of the 10-cube. Vertices of the birectified 10-cube are located in the square face centers of the 10-cube. Vertices of the trirectified 10-cube are located in the cubic cell centers of the 10-cube. The others are more simply constructed relative to the 10-cube dual polytpoe, the 10-orthoplex. These polytopes are part of a family 1023 uniform 10-polytopes with BC10 symmetry. Rectified 10-cubeRectified 10-orthoplex | Type | uniform 10-polytope | Schläfli symbol | t1{38,4} | Coxeter-Dynkin diagrams | node|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} {{CDD|nodes_11|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | 46080 | Vertices | 5120 | Vertex figure | 8-simplex prism | Coxeter groups | C10, [4,38] D10, [37,1,1] | Properties | convex |
Alternate names- Rectified dekeract (Acronym rade) (Jonathan Bowers)[1]
Cartesian coordinates Cartesian coordinates for the vertices of a rectified 10-cube, centered at the origin, edge length are all permutations of: (±1,±1,±1,±1,±1,±1,±1,±1,±1,0) Images{{B10 Coxeter plane graphs|t1|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}} Birectified 10-cubeBirectified 10-orthoplex | Type | uniform 10-polytope | Coxeter symbol | 0711 | Schläfli symbol | t2{38,4} | Coxeter-Dynkin diagrams | node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} {{CDD|nodes|split2|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | 184320 | Vertices | 11520 | Vertex figure | {4}x{36} | Coxeter groups | C10, [4,38] D10, [37,1,1] | Properties | convex |
Alternate names- Birectified dekeract (Acronym brade) (Jonathan Bowers)[2]
Cartesian coordinates Cartesian coordinates for the vertices of a birectified 10-cube, centered at the origin, edge length are all permutations of: (±1,±1,±1,±1,±1,±1,±1,±1,0,0) Images{{B10 Coxeter plane graphs|t2|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}} Trirectified 10-cubeTrirectified 10-orthoplex | Type | uniform 10-polytope | Schläfli symbol | t3{38,4} | Coxeter-Dynkin diagrams | node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} {{CDD|nodes|split2|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | 322560 | Vertices | 15360 | Vertex figure | {4,3}x{35} | Coxeter groups | C10, [4,38] D10, [37,1,1] | Properties | convex |
Alternate names- Tririrectified dekeract (Acronym trade) (Jonathan Bowers)[3]
Cartesian coordinates Cartesian coordinates for the vertices of a triirectified 10-cube, centered at the origin, edge length are all permutations of: (±1,±1,±1,±1,±1,±1,±1,0,0,0) Images{{B10 Coxeter plane graphs|t3|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}} Quadrirectified 10-cubeQuadrirectified 10-orthoplex | Type | uniform 10-polytope | Schläfli symbol | t4{38,4} | Coxeter-Dynkin diagrams | node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} {{CDD|nodes|split2|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | 322560 | Vertices | 13440 | Vertex figure | {4,3,3}x{34} | Coxeter groups | C10, [4,38] D10, [37,1,1] | Properties | convex |
Alternate names- Quadrirectified dekeract
- Quadrirectified decacross (Acronym terade) (Jonathan Bowers)[4]
Cartesian coordinates Cartesian coordinates for the vertices of a quadrirectified 10-cube, centered at the origin, edge length are all permutations of: (±1,±1,±1,±1,±1,±1,0,0,0,0) Images{{B10 Coxeter plane graphs|t4|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}} Notes1. ^Klitzing, (o3o3o3o3o3o3o3o3x4o - rade) 2. ^Klitzing, (o3o3o3o3o3o3o3x3o4o - brade) 3. ^Klitzing, (o3o3o3o3o3o3x3o3o4o - trade) 4. ^Klitzing, (o3o3o3o3o3x3o3o3o4o - terade)
References - H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- {{KlitzingPolytopes|polyxenna.htm|10D|uniform polytopes (polyxenna)}} x3o3o3o3o3o3o3o3o4o - ka, o3x3o3o3o3o3o3o3o4o - rake, o3o3x3o3o3o3o3o3o4o - brake, o3o3o3x3o3o3o3o3o4o - trake, o3o3o3o3x3o3o3o3o4o - terake, o3o3o3o3o3x3o3o3o4o - terade, o3o3o3o3o3o3x3o3o4o - trade, o3o3o3o3o3o3o3x3o4o - brade, o3o3o3o3o3o3o3o3x4o - rade, o3o3o3o3o3o3o3o3o4x - deker
External links - [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- Multi-dimensional Glossary
{{Polytopes}} 1 : 10-polytopes |