请输入您要查询的百科知识:

 

词条 Rectified 10-simplexes
释义

  1. Rectified 10-simplex

      Alternate names   Coordinates    Images  

  2. Birectified 10-simplex

      Alternate names   Coordinates    Images  

  3. Trirectified 10-simplex

      Alternate names   Coordinates    Images  

  4. Quadrirectified 10-simplex

      Alternate names   Coordinates    Images  

  5. Notes

  6. References

  7. External links

10-simplex
{{CDD>node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
Rectified 10-simplex
{{CDD>node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
Birectified 10-simplex
{{CDD>node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
Trirectified 10-simplex
{{CDD>node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}
Quadrirectified 10-simplex
{{CDD>node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}
Orthogonal projections in A9 Coxeter plane

In ten-dimensional geometry, a rectified 10-simplex is a convex uniform 10-polytope, being a rectification of the regular 10-simplex.

These polytopes are part of a family of 527 uniform 10-polytopes with A10 symmetry.

There are unique 5 degrees of rectifications including the zeroth, the 10-simplex itself. Vertices of the rectified 10-simplex are located at the edge-centers of the 10-simplex. Vertices of the birectified 10-simplex are located in the triangular face centers of the 10-simplex. Vertices of the trirectified 10-simplex are located in the tetrahedral cell centers of the 10-simplex. Vertices of the quadrirectified 10-simplex are located in the 5-cell centers of the 10-simplex.

Rectified 10-simplex

Rectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t1{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
9-faces22
8-faces165
7-faces660
6-faces1650
5-faces2772
4-faces3234
Cells2640
Faces1485
Edges495
Vertices55
Vertex figure9-simplex prism
Petrie polygondecagon
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

The rectified 10-simplex is the vertex figure of the 11-demicube.

Alternate names

  • Rectified hendecaxennon (Acronym ru) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of the rectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 11-orthoplex.

Images

{{A10 Coxeter plane graphs|t1|100}}

Birectified 10-simplex

Birectified 10-simplex
Typeuniform 9-polytope
Schläfli symbol t2{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges1980
Vertices165
Vertex figure{3}x{3,3,3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

  • Birectified hendecaxennon (Acronym bru) (Jonathan Bowers)[2]

Coordinates

The Cartesian coordinates of the vertices of the birectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 11-orthoplex.

Images

{{A10 Coxeter plane graphs|t2|100}}

Trirectified 10-simplex

Trirectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t3{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges4620
Vertices330
Vertex figure{3,3}x{3,3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

  • Trirectified hendecaxennon (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of the trirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,1,1,1,1). This construction is based on facets of the triirectified 11-orthoplex.

Images

{{A10 Coxeter plane graphs|t3|100}}

Quadrirectified 10-simplex

Quadrirectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t4{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges6930
Vertices462
Vertex figure{3,3,3}x{3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

  • Quadrirectified hendecaxennon (Acronym teru) (Jonathan Bowers)[4]

Coordinates

The Cartesian coordinates of the vertices of the quadrirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,1,1,1,1,1). This construction is based on facets of the quadrirectified 11-orthoplex.

Images

{{A10 Coxeter plane graphs|t4|100}}

Notes

1. ^Klitzing, (o3x3o3o3o3o3o3o3o3o - ru)
2. ^Klitzing, (o3o3x3o3o3o3o3o3o3o - bru)
3. ^Klitzing, (o3o3o3x3o3o3o3o3o3o - tru)
4. ^Klitzing, (o3o3o3o3x3o3o3o3o3o - teru)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • {{KlitzingPolytopes|polyxenna.htm|10D|uniform polytopes (polyxenna)}} x3o3o3o3o3o3o3o3o3o - ux, o3x3o3o3o3o3o3o3o3o - ru, o3o3x3o3o3o3o3o3o3o - bru, o3o3o3x3o3o3o3o3o3o - tru, o3o3o3o3x3o3o3o3o3o - teru

External links

  • [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
  • Multi-dimensional Glossary
{{Polytopes}}

1 : 10-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 22:26:18