请输入您要查询的百科知识:

 

词条 Robust principal component analysis
释义

  1. Algorithms

     Non-convex method  Convex relaxation 

  2. Applications

      Video surveillance    Face recognition  

  3. Surveys

  4. Books, journals and workshops

      Books    Journals    Workshops    Sessions  

  5. Resources and libraries

      Websites    Libraries  

  6. References

  7. External links

{{Underlinked|date=April 2014}}

Robust Principal Component Analysis (RPCA) is a modification of the widely used statistical procedure of principal component analysis (PCA) which works well with respect to grossly corrupted observations. A number of different approaches exist for Robust PCA, including an idealized version of Robust PCA, which aims to recover a low-rank matrix L0 from highly corrupted measurements M = L0 +S0.[1] This decomposition in low-rank and sparse matrices can be achieved by techniques such as Principal Component Pursuit method (PCP),[1] Stable PCP,[1] Quantized PCP,[2] Block based PCP,[3] and Local PCP.[4] Then, optimization methods are used such as the Augmented Lagrange Multiplier Method (ALM[5]), Alternating Direction Method (ADM[6]), Fast Alternating Minimization (FAM[7])

or Iteratively Reweighted Least Squares (IRLS [8][9][10]).

Algorithms

Non-convex method

The state-of-the-art guaranteed algorithm for the robust PCA problem (with the input matrix being ) is an alternating minimization type algorithm.[11] The computational complexity is where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., where is the true low-rank component and is the estimated or recovered low-rank component. Intuitively, this algorithm performs projections of the residual on to the set of low-rank matrices (via the SVD operation) and sparse matrices (via entry-wise hard thresholding) in an alternating manner - that is, low-rank projection of the difference the input matrix and the sparse matrix obtained at a given iteration followed by sparse projection of the difference of the input matrix and the low-rank matrix obtained in the previous step, and iterating the two steps until convergence.

Convex relaxation

This method consists of relaxing the rank constraint in the optimization problem to the nuclear norm and the sparsity constraint to -norm . The resulting program can be solved using methods such as the method of Augmented Lagrange Multipliers.

Applications

RPCA has many real life important applications particularly when the data under study can naturally be modeled as a low-rank plus a sparse contribution. Following examples are inspired by contemporary challenges in computer science, and depending on the applications, either the low-rank component or the sparse component could be the object of interest:

Video surveillance

Given a sequence of surveillance video frames, it is often required to identify the activities that stand out from the background. If we stack the video frames as columns of a matrix M, then the low-rank component L0 naturally corresponds to the stationary background and the sparse component S0 captures the moving objects in the foreground.[12][13]

Face recognition

Images of a convex, Lambertian surface under varying illuminations span a low-dimensional subspace.[14] This is one of the reasons for effectiveness of low-dimensional models for imagery data. In particular, it is easy to approximate images of a human's face by a low-dimensional subspace. To be able to correctly retrieve this subspace is crucial in many applications such as face recognition and alignment. It turns out that RPCA can be applied successfully to this problem to exactly recover the face.[12]

Surveys

  • Robust PCA [13]
  • Dynamic RPCA [15]
  • Decomposition into Low-rank plus Additive Matrices [16]
  • Low-rank models[17]

Books, journals and workshops

Books

  • T. Bouwmans, N. Aybat, and E. Zahzah. Handbook on Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing, CRC Press, Taylor and Francis Group, May 2016. (more information: http://www.crcpress.com/product/isbn/9781498724623)
  • Z. Lin, H. Zhang, "Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications", Academic Press, Elsevier, June 2017. (more information: https://www.elsevier.com/books/low-rank-models-in-visual-analysis/lin/978-0-12-812731-5)

Journals

  • N. Vaswani, Y. Chi, T. Bouwmans, Special Issue on “Rethinking PCA for Modern Datasets: Theory, Algorithms, and Applications”, Proceedings of the IEEE, 2018.
  • T. Bouwmans, N. Vaswani, P. Rodriguez, R. Vidal, Z. Lin, Special Issue on “[https://signalprocessingsociety.org/blog/ieee-jstsp-special-issue-data-science-robust-subspace-learning-and-tracking-theory-algorithms Robust Subspace Learning and Tracking: Theory, Algorithms, and Applications]”, IEEE Journal of Selected Topics in Signal Processing, December 2018.

Workshops

  • RSL-CV 2015: Workshop on Robust Subspace Learning and Computer Vision in conjunction with ICCV 2015 (For more information: http://rsl-cv2015.univ-lr.fr/workshop/)
  • RSL-CV 2017: Workshop on Robust Subspace Learning and Computer Vision in conjunction with ICCV 2017 (For more information: http://rsl-cv.univ-lr.fr/2017/)

Sessions

  • Special Session on "Online Algorithms for Static and Dynamic Robust PCA and Compressive Sensing" in conjunction with SSP 2018. (More information: https://ssp2018.org/)

Resources and libraries

Websites

  • Background Subtraction Website
  • [https://sites.google.com/site/robustdlam/ DLAM Website]
  • Documentation from the University of Illinois

Libraries

LRS Library (A. Sobral, L3i, Univ. La Rochelle, France), The LRSLibrary provides a collection of low-rank and sparse decomposition algorithms in MATLAB. The library was designed for motion segmentation in videos, but it can be also used or adapted for other computer vision. Currently the LRSLibrary contains a total of 72 matrix-based and tensor-based algorithms. The LRSLibrary was tested successfully in MATLAB R2013b both x86 and x64 versions.

References

1. ^{{cite journal|author1=J. Wright|author2=Y. Peng|author3=Y. Ma|author4=A. Ganesh|author5=S. Rao|title=Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices by Convex Optimization|journal=Neural Information Processing Systems, NIPS 2009|year=2009}}
2. ^{{cite journal|last= S. Becker|author2=E. Candes, M. Grant|title=TFOCS: Flexible First-order Methods for Rank Minimization|journal=Low-rank Matrix Optimization Symposium, SIAM Conference on Optimization|year=2011}}
3. ^{{cite journal|last= G. Tang|author2= A. Nehorai|title=Robust principal component analysis based on low-rank and block-sparse matrix decomposition|journal=Annual Conference on Information Sciences and Systems, CISS 2011|year=2011}}
4. ^{{cite journal|last= B. Wohlberg|author2= R. Chartrand|author3=J. Theiler|title=Local Principal Component Pursuit for Nonlinear Datasets|journal=International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012|year=2012}}
5. ^{{cite journal|last=Z. Lin|author2= M. Chen|author3=L. Wu|author4=Y. Ma|title=The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices|journal= Journal of Structural Biology|volume= 181|issue= 2|pages= 116–27|arxiv= 1009.5055|doi= 10.1016/j.jsb.2012.10.010|pmid= 23110852|year= 2013|pmc=3565063}}
6. ^{{cite journal|last=X. Yuan|author2= J. Yang|title=Sparse and Low-Rank Matrix Decomposition via Alternating Direction Methods|journal=Optimization Online|year=2009}}
7. ^{{cite journal|last=P. Rodríguez|author2= B. Wohlberg|title=Fast Principal Component Pursuit Via Alternating Minimization|journal=IEEE International Conference on Image Processing, ICIP 2013|year=2013}}
8. ^{{cite journal|last=C. Guyon|author2= T. Bouwmans|author3=E. Zahzah|title=Foreground Detection via Robust Low Rank Matrix Decomposition including Spatio-Temporal Constraint|journal=International Workshop on Background Model Challenges, ACCV 2012|year=2012}}
9. ^{{cite journal|last=C. Guyon|author2= T. Bouwmans|author3=E. Zahzah|title=Foreground Detection via Robust Low Rank Matrix Factorization including Spatial Constraint with Iterative Reweighted Regression|journal=International Conference on Pattern Recognition, ICPR 2012|year=2012}}
10. ^{{cite journal|last=C. Guyon|author2= T. Bouwmans|author3=E. Zahzah|title=Moving Object Detection via Robust Low Rank Matrix Decomposition with IRLS scheme|journal=International Symposium on Visual Computing, ISVC 2012|year=2012}}
11. ^{{cite journal|first1=Netrapalli|last1=P. |first2=Niranjan|last2=U.|first3=Sanghavi|last3=S.|first4=Anandkumar|last4=A.|first5=Jain|last5=P.|title=Non-convex robust PCA|journal=Advances in Neural Information Processing Systems|volume=1410|pages=1107–1115|year=2014|bibcode=2014arXiv1410.7660N|arxiv=1410.7660}}
12. ^{{cite journal|last=Emmanuel J. Candes|author2=Xiaodong Li |author3=Yi Ma |author4=John Wright |title=Robust Principal Component Analysis?}}
13. ^{{cite journal|last=T. Bouwmans|author2= E. Zahzah|title=Robust PCA via Principal Component Pursuit: A Review for a Comparative Evaluation in Video Surveillance|journal=Special Issue on Background Models Challenge, Computer Vision and Image Understanding|year=2014}}
14. ^{{cite journal|last=R. Basri|author2=D. Jacobs |title=Lambertian reflectance and linear subspaces}}
15. ^{{cite journal|last=N. Vaswani|author2= T. Bouwmans|author3=S. Javed|author4=P. Narayanamurthy|title=Robust PCA and Robust Subspace Tracking|journal=Preprint|volume= 35|issue= 4|pages= 32–55|arxiv= 1711.09492| year=2017|bibcode=2017arXiv171109492V|doi= 10.1109/MSP.2018.2826566}}
16. ^{{Cite journal|last=T. Bouwmans|author2= A. Sobral|author3= S. Javed|author4= S. Jung|author5= E. Zahzahg|title=Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset |journal= Computer Science Review|volume= 23|pages= 1–71|arxiv=1511.01245|year=2015|doi= 10.1016/j.cosrev.2016.11.001}}
17. ^{{cite journal|last=Z. Lin|title=A Review on Low-Rank Models in Data Analysis|journal=Big Data and Information Analytics|volume=1|issue=2|pages=139–161|year=2016|doi=10.3934/bdia.2016001}}

External links

  • [https://github.com/andrewssobral/lrslibrary#lrslibrary LRSLibrary]

3 : Matrix decompositions|Dimension reduction|Robust statistics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 16:19:30