- References
In mathematics, the Siegel–Weil formula, introduced by {{harvs|txt|last=Weil|authorlink=André Weil|year1=1964|year2=1965}} as an extension of the results of {{harvs|txt|last=Siegel|authorlink=Carl Ludwig Siegel|year1=1951|year2=1952}}, expresses an Eisenstein series as a weighted average of theta series of lattices in a genus, where the weights are proportional to the inverse of the order of the automorphism group of the lattice. For the constant terms this is essentially the Smith–Minkowski–Siegel mass formula. References- {{Citation | last1=Siegel | first1=Carl Ludwig | author1-link=Carl Ludwig Siegel | title=Indefinite quadratische Formen und Funktionentheorie. I | doi=10.1007/BF01343549 |mr=0067930 | year=1951 | journal=Mathematische Annalen | issn=0025-5831 | volume=124 | pages=17–54}}
- {{Citation | last1=Siegel | first1=Carl Ludwig | author1-link=Carl Ludwig Siegel | title=Indefinite quadratische Formen und Funktionentheorie. II | doi=10.1007/BF01343576 |mr=0067931 | year=1952 | journal=Mathematische Annalen | issn=0025-5831 | volume=124 | pages=364–387}}
- {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Sur certains groupes d'opérateurs unitaires | doi=10.1007/BF02391012 |mr=0165033 | year=1964 | journal=Acta Mathematica | issn=0001-5962 | volume=111 | pages=143–211}}
- {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Sur la formule de Siegel dans la théorie des groupes classiques | doi=10.1007/BF02391774 |mr=0223373 | year=1965 | journal=Acta Mathematica | issn=0001-5962 | volume=113 | pages=1–87}}
{{DEFAULTSORT:Siegel-Weil formula}}{{numtheory-stub}} 1 : Theorems in number theory |