词条 | SORCER |
释义 |
}}{{Infobox OS | name = SORCER | license = Apache License | website = {{URL|sorcersoft.org/project/site/}} }} The service-oriented computing environment (SORCER){{efn-ua | Written as SOCER in some early sources.}} is a distributed computing platform implemented in Java. It allows writing network-programs (called "exertions") that operate on wrapped applications (services) to spread across the network. SORCER is often utilized in scenarios similar to those where grids are used (grid computing) in order to run parallel tasks. SORCER's predecessor was the federated intelligent product environment (FIPER), which was software for a GE aircraft-engine-design project funded from 1999 to 2003 by the National Institute of Standards and Technology's Advanced Technology Program. The project followed the principal investigator, and thus SORCER Labs was founded in November 2002 at Texas Tech University (TTU);{{efn-ua | name="About Us" | {{cite web|url=http://sorcersoft.org/about/about.html|title=About SORCER Lab at TTU CS|accessdate=15 December 2013}} }} SORCER core's source code was made public in 2013 under the open source Apache license.{{efn-ua | name="timeline" | {{cite web|url=http://sorcersoft.org/about/timeline.html|title=About SORCER: Timeline|accessdate=15 December 2013}} }} SORCER (and FIPER) were developed at GE from 1994 to 2002, at TTU through 2009, and since then at the United States Air Force Research Laboratory (AFRL). Other groups which have made use of SORCER include Beijing Jiaotong University in China, Cranfield University in the United Kingdom, and Ulyanovsk State University in Russia. OverviewSORCER is a computing platform that allows the end user to program dynamic front-end compound services, called exertions{{Neologism inline|date=December 2013}}, bound at runtime by the SORCER OS (SOS) to federations of service providers as new back-end dynamic services.{{clarify|date=December 2013}} The SOS utilizes the service object-orient architecture (SOOA){{Neologism inline|date=December 2013}} and a federated method invocation.[1] The front-end services created by the end users are service collaborations of users' applications, tools, and utilities with their data and corresponding control strategies.[2] The end users in understandable domain specific languages (DSL) define only their service-oriented process expressions and the SOS makes that process expressions actualized by the corresponding dynamic service federations in the network.{{clarify|date=December 2013}} SORCER is a federated service-oriented platform with a front-end federated service-oriented programming environment, a matching operating system, and a federated virtual processor. The architecture of SORCER is based on the concept: Everything Anywhere Anytime As a Service (EaaaS). Therefore, the end user service requests (front-end expression) as well service providers (back-end federations) are treated as services. SORCER is the first platform that created front-end service-oriented mogramming{{Neologism inline|date=December 2013}} (programming or modeling or both) as the key element of its federated service orientation. SORCER mograms{{Neologism inline|date=December 2013}} are called exertions{{Neologism inline|date=December 2013}}. The exertion-oriented programming{{Neologism inline|date=December 2013}} has its roots in the FIPER project.[3] An exertion{{Neologism inline|date=December 2013}} as the front-end service composition defined by the user is bound by the SORCER OS (SOS) to service providers (local and/or remote) to form a matching collaborative service federation at runtime - a virtual service processor of the SORCER platform. SORCER Operating System{{Refimprove section|date=December 2013}}The SORCER Operating System (SOS) manages execution of front-end service-oriented mograms{{Neologism inline|date=December 2013}} and related resources including required service providers. The SOOA kernel by itself is the service-oriented system made up of system service providers architecturally equivalent to domain specific service providers. A service provider is a container for service beans{{Clarify|reason=service beans? What does this mean?|date=December 2013}} that is responsible for deploying services in the network, publishing their proxies to registries, and allowing the SOS to access proxies of deployed providers. Providers maintain their availability in the network continuously by renewing leases for their registered object proxies; registries intercept these announcements and cache/remove proxy objects per providers’ requests. The SOS looks up proxies by sending queries to registries and making selections from the currently available providers or provisions on-demand required ones.[4] Queries generally contain search criteria related to the type and quality of service. Registries facilitate searching by storing proxy objects of services and making them available to the SOS. Providers use discovery/join protocols to publish services in the network and the SOS uses discovery/join protocols to discover registries and lookup proxies in those registries. ApplicationsThe basic exertion-oriented platform{{Neologism inline|date=December 2013}} was developed at GE Global Research Center with the partners of the FIPER project (1999-2003). FIPER was used at that time to design aircraft engines.[5][6][7] The Multidisciplinary Science and Technology Center, the United States Air Force Research Laboratory/WPAFB is using SORCER to address the physics-based distributed collaborative design for aerospace vehicle development.[8][9][10] SORCER was selected for comparative study of evolutionary computing of optimization techniques at the Cranfield University, UK.[11] In China, SORCER is used as noise mapping platform for urban traffic,[12] a resource integration platform,[13] engineering collaborative design and manufacturing environment,[14][15] and at the Wright State University as a collaborative computational framework for multidisciplinary and reliability-based analysis and optimization.[16] HistorySORCER follows up on the FIPER project (1999-2003) - funded by National Institute of Standards and Technology Advanced Technology Program[17]{{Primary-source-inline|date=December 2013}}{{Failed verification|date=December 2013}}. The FIPER software environment was developed and demonstrated at the GE Global Research Center (Chief software architect and lead developer M. Sobolewski (Michał Władysław Sobolewski)[18] and engineering application development led by R. Kolonay) in collaboration with GE Aviation (Cincinnati, OH), Goodrich Corporation Aerostructures Group (Chula Vista, CA), Parker Hannifin Corporation (Mentor, OH), Engineous Software, Inc. (Cary, NC) and Ohio University (Athens, OH). When the project was finished M. Sobolewski established the SORCER Laboratory[19]{{Primary-source-inline|date=December 2013}} at Texas Tech University (2002-2009) where he continued his FIPER-based research. The SORCER Laboratory was partially funded by General Electric, Texas Tech University, Sun Microsystems, Air Force Research Laboratory, and others.{{citation needed|date=December 2013}} During that time 28 graduate research studies (M.S. and Ph.D.) were completed{{citation needed|date=December 2013}} all of which contributed to the development of the SORCER platform and the foundations of federated service-oriented computing. In the meantime, a number of collaborative SORCER-based projects (2007-2010) were realized together with universities from other countries (Beijing Jiaotong University, China[20]{{Primary-source-inline|date=December 2013}}; Beihang University, China[21]{{Primary-source-inline|date=December 2013}}; Ulyanovsk State University and Samara State Aerospace University, Russia[22]{{Primary-source-inline|date=December 2013}}). Since 2008 M. Sobolewski continues his SORCER applied research at the Multidisciplinary Science and Technology Center, Air Force Research Laboratory/WPAFB[9]{{Failed verification|date=December 2013}} and starting in 2010 simultaneously at the Polish Japanese Institute of Information Technology.{{citation needed|date=December 2013}} In 2010 the SORCER Laboratory became an independent research organization focused on the development federated service-oriented computing.{{citation needed|date=December 2013}} Since 2013 the development of SORCER is continued simultaneously by Sorcersoft.com in cooperation with the Polish-Japanese Institute of Information Technology and SMT Software.{{citation needed|date=December 2013}} Notes{{notelist-ua|close=1}}References1. ^{{Cite book| publisher = In-Tech| isbn = 978-953-7619-51-0| pages = 337–363| last = Sobolewski| first = Michael| title = Metacomputing with Federated Method Invocation| booktitle = Advances in Computer Science and IT| editors = M. Akbar Hussain| accessdate = 2010-01-27| year = 2009| url = http://sorcersoft.org/publications/papers/2009/metacomputingwithfmi.pdf}} 2. ^{{Cite book| publisher = University of Dayton| last = Thompson | first = Ernest D| title = University of Dayton, 2012| chapter = Incorporation of computational fluid dynamics into flight vehicle preliminary design | pages = 230–241| year = 2012| chapterurl = http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335270317}} 3. ^{{Cite book| publisher = Cranfield University| last = Goteng | first = Gokop| title = School of Applied Sciences, 2009| chapter = Development of a Grid Service for Multi-objective Design Optimisation | year = 2009| chapterurl = https://dspace.lib.cranfield.ac.uk/bitstream/1826/4423/1/Gokop_Goteng_thesis_2009.pdf}} 4. ^{{Cite book| publisher = (Warsaw University of Technology, Faculty of Electronics and Information Technology) Ph.D. Dissertation| last = Rubach| first = Paweł| title = | chapter = Optimal Resource Allocation in Federated Metacomputing Environments| date = 2010-11-16 | chapterurl = http://www.ipipan.waw.pl/~subieta/prace%20doktorskie/PhD_Pawel_Rubach.pdf }} 5. ^{{Cite book| publisher = American Institute of Aeronautics and Astronautics | doi = 10.2514/6.2001-1270| last = Seeley| first = C.E.|author2=Tangirila V.E. |author3=Kolonay R.M. |author4=Bailey M.W. | title = 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference AIAA-2001-1270| chapter = Multidisciplinary analysis and optimization of combustion sub-system using a network-centric approach| year = 2001}} 6. ^{{Cite book| publisher = American Institute of Aeronautics and Astronautics | doi = 10.2514/6.2002-1588| last = Tappeta| first = R.V. |author2=Kolonay R.M. |author3=Burton S.A| title = 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference AIAA-2002-1588| chapter = Application of Approximate Optimization to Turbine Blade Design in a Network-Centric Environment| year = 2002| isbn = 978-1-62410-117-5}} 7. ^{{Cite book| publisher = IAIAA | doi = 10.2514/6.2004-1847| last = Liao| first = Li|author2=Shashishekara Talya |author3=Raymond Kolonay | title = 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization AIAA-2002-5479| chapter = 2D/3D CFD Design Optimization Using the Federated Intelligent Product Environment (FIPER) Technology| year = 2004| chapterurl = http://arc.aiaa.org/doi/abs/10.2514/6.2002-5479| isbn = 978-1-62410-079-6}} 8. ^{{Cite book| publisher = AIAA | doi = 10.2514/6.2004-4599| last = Kolonay| first = Raymond|author2=Scott Burton | title = 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference AIAA 2004-4599| chapter = Object Models for Distributed Multidisciplinary Analysis and Optimization (MAO) Environments that Promotes CAE Interoperability| year = 2004| isbn = 978-1-62410-019-2}} 9. ^1 {{Cite book| publisher = IOS Press| isbn = 978-1-61499-301-8| pages = 381–390| editors = Cees Bil, John Mo, Josip Stjepandić| last = Kolonay| first = Raymond| title = Proceedings of the 20th ISPE International Conference on Concurrent Engineering| chapter = Physics-Based Distributed Collaborative Design for Aerospace Vehicle Development and Technology Assessment| year = 2013| chapterurl = http://ebooks.iospress.nl/publication/34808}} 10. ^{{Cite book| publisher = AIAA | pages = 381–390| last = Scott A.| first = Burton|author2=Edward J. Alyanak |author3=Raymond M. Kolonay | title = 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM, AIAA 2012-5520| chapter = Efficient Supersonic Air Vehicle Analysis and Optimization Implementation using SORCER| year = 2012| doi = 10.2514/6.2012-5520| isbn = 978-1-60086-930-3| citeseerx = 10.1.1.694.9766}} 11. ^{{Cite book| publisher = Springer-Verlag | doi = 10.2514/6.2004-4599| last = Tiwari| first = Ashutosh|author2=Gokop Goteng |author3=Rajkumar Roy | title = Advances in Evolutionary Computing for System Design, Studies in Computational Intelligence Volume 66, 2007| chapter = Evolutionary Computing within Grid Environment| year = 2007| chapterurl =https://link.springer.com/chapter/10.1007%2F978-3-540-72377-6_10| isbn = 978-1-62410-019-2}} 12. ^{{Cite book| publisher = IEEE Computer Society Washington, DC, USA| isbn = 978-0-7695-4455-7| pages = 109–112| last = Li| first = Nan|author2=Tao Feng |author3=Bin Liu | title = A SOOA Based Distributed Computing Mechanism for Road Traffic Noise Mapping| chapter = ICDMA '11 Proceedings of the 2011 Second International Conference on Digital Manufacturing & Automation| year = 2011| chapterurl = http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6051863&queryText%3DA+SOOA+Based+Distributed+Computing+Mechanism+for+Road+Traffic+Noise+Mapping}} 13. ^{{Cite book| isbn = 978-1-61284-087-1| pages = 1466–1469| last = Lingjun | first = Kong|author2=Wensheng Xu |author3=Jianzhong Cha |author4=Jiaqing Yu |author5=Nan Li | title = Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on (Volume:3 ) | chapter = A resource integration platform for manufacturing grid based on SOOA| year = 2011| chapterurl = http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=6023325&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6023325}} 14. ^{{Cite book| pages = = 40–44| last = ZHANG| first = Rui-hong|author2=LI Nan |author3=CHA Jian-zhong |author4=LU Yi-ping | title = JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY, Vol.37 No.4| chapter = Engineering Collaborative Design Environment Based on Service-oriented Architecture| year = 2008| chapterurl = http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBGB200804012.htm}} 15. ^{{Cite book| publisher = 北京交通大学 (Beijing Jiaotong University) Ph.D. Dissertation| last = 孔令军| first = (Kong Lingjun)| title = Research on servitization method of design resources in the cloud manufacturing environment | chapter = 云制造环境下的设计资源服务化方法研究| date = 2013-06-01 | chapterurl = http://cdmd.cnki.com.cn/Article/CDMD-10004-1013279659.htm }} 16. ^{{Cite book| publisher = Wright State University| last = Aithala | first = Karkada Nagesha | title = Wright State University, 2011| chapter = A Collaborative Computational Framework for Multidisciplinary and Reliability-based Analysis and Optimization Using SORCER| year = 2011| chapterurl = https://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM:::F1501_ID:wright1316463759,attachment}} 17. ^http://jazz.nist.gov/atpcf/prjbriefs/prjbrief.cfm?ProjectNumber=99-01-3079 18. ^Michael Sobolewski, Who'sWho in America, Marquis Who's Who 19. ^{{cite journal|publisher=Texas Tech University |date=Fall 2002|title=The Computer Science Alumni Newsletter - SORCER|volume=13|issue=1|page=1|url=http://www.depts.ttu.edu/cs/department/docs/newsletter/fall_2002.pdf|quote=The Laboratory for Service- Oriented Computing EnviRonment (SORCER), headed up by Mike Sobolewski, is an interdisciplinary laboratory at the Computer Science Department at Texas Tech University.}} 20. ^{{cite web|url=http://sorcersoft.org/docs/Agreement-Jiaotong.PDF|title=Agreementfor Collaborative Research on SCoDProjectbetweenBeijingJiaotongUniversity(BJTU) and TexasTechUniversity (TTU)|date=July 2007|publisher=Texas Tech University|accessdate=14 December 2013}} 21. ^{{cite web|url= http://sorcersoft.org/docs/Agreement-BeiHang.PDF|title=TheAgreement signed for Collaborative Research CoSEA Project between Beihang University @UAA) and TexasTech University(TTII)|date=30 March 2007|accessdate=14 December 2013}} 22. ^{{cite web|url=http://sorcersoft.org/docs/Agreement-Jiaotong.PDF|title=Agreementfor Collaborative Research on SCoDProjectbetweenBeijingJiaotongUniversity(BJTU) and TexasTechUniversity (TTU)|date=9 July 2007|accessdate=14 December 2013}} External links
2 : Java enterprise platform|Java platform |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。