请输入您要查询的百科知识:

 

词条 Spinor genus
释义

  1. Definitions

  2. Results

  3. See also

  4. References

In mathematics, the spinor genus is a classification of quadratic forms and lattices over the ring of integers, introduced by Martin Eichler. It refines the genus but may be coarser than proper equivalence

Definitions

We define two Z-lattices L and M in a quadratic space V over Q to be spinor equivalent if there exists a transformation g in the proper orthogonal group O+(V) and for every prime p there exists a local transformation fp of Vp of spinor norm 1 such that M = g fpLp.

A spinor genus is an equivalence class for this equivalence relation. Properly equivalent lattices are in the same spinor genus, and lattices in the same spinor genus are in the same genus. The number of spinor genera in a genus is a power of two, and can be determined effectively.

Results

An important result is that for indefinite forms of dimension at least three, each spinor genus contains exactly one proper equivalence class.

See also

  • Genus of a quadratic form

References

  • {{cite book | first=J. W. S. | last=Cassels | authorlink=J. W. S. Cassels | title=Rational Quadratic Forms | series=London Mathematical Society Monographs | volume=13 | publisher=Academic Press | year=1978 | isbn=0-12-163260-1 | zbl=0395.10029 }}
  • {{cite book | zbl=0915.52003 | last1=Conway | first1=J. H. | author1-link=John Horton Conway | last2=Sloane | first2=N. J. A. | author2-link=Neil Sloane | others=With contributions by Bannai, E.; Borcherds, R. E.; Leech, J.; Norton, S. P.; Odlyzko, A. M.; Parker, R. A.; Queen, L.; Venkov, B. B. | title=Sphere packings, lattices and groups | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | volume=290 | location=New York, NY | publisher=Springer-Verlag | isbn=0-387-98585-9 }}

1 : Quadratic forms

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 16:42:29