词条 | Thermotogae |
释义 |
| domain = Bacteria | superphylum = Eurybacteria | phylum = Thermotogae Reysenbach 2002 emend. Bhandari & Gupta 2014 | classis = Thermotogae Reysenbach 2002 emend. Bhandari & Gupta 2014 | subdivision_ranks = Order | subdivision =
| synonyms =
}} The Thermotogae are a phylum of the domain Bacteria. The phylum Thermotogae is composed of Gram-negative staining, anaerobic, and mostly thermophilic and hyperthermophilic bacteria.[1][2] CharacteristicsThe name of this phylum is derived from the existence of many of these organisms at high temperatures along with the characteristic sheath structure, or "toga", surrounding the cells of these species.[3] Recently, some Thermotogae existing at moderate temperatures have also been identified.[4] Although Thermotogae species exhibit Gram-negative staining, they are bounded by a single-unit lipid membrane, hence they are monoderm bacteria.[2][5][6] Because of the ability of some Thermotogae species to thrive at high temperatures, they are considered attractive targets for use in industrial processes.[7] The metabolic ability of Thermotogae to utilize different complex-carbohydrates for production of hydrogen gas led to these species being cited as a possible biotechnological source for production of energy alternative to fossil fuels.[8] TaxonomyThis phylum presently consists of a single class (Thermotogae), four orders (Thermotogales, Kosmotogales, Petrotogales, and Mesoaciditogales) and five families (Thermatogaceae, Fervidobacteriaceae, Kosmotogaceae, Petrotogaceae, and Mesoaciditogaceae).[1][2][3][13][9][10][11] It contains a total of 15 genera and 52 species.[12] In the 16S rRNA trees, the Thermotogae have been observed to branch with the Aquificae (another phylum comprising hyperthermophilic organisms) in close proximity to the archaeal-bacterial branch point.[1][3] However, a close relationship of the Thermotogae to the Aquificae, and the deep branching of the latter group of species, is not supported by phylogenetic studies based upon other gene/protein sequences.[2][13][14][15][16] and also by conserved signature indels in several highly conserved universal proteins.[17][18] The Thermotogae have also been scrutinized for their supposedly profuse Lateral gene transfer with Archaeal organisms.[19][20] However, recent studies based upon more robust methodologies suggest that incidence of LGT between Thermotogae and other groups including Archaea is not as high as suggested in earlier studies.[21][22][23][24] Molecular signaturesUntil recently, no biochemical or molecular markers were known that could distinguish the species from the phylum Thermotogae from all other bacteria.[1] However, a recent comparative genomic study has identified large numbers of conserved signature indels (CSIs) in important proteins that are specific for either all Thermotogae species or a number of its subgroups.[2][23] Many of these CSIs in important housekeeping proteins such as Pol1, RecA, and TrpRS, and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in different sequenced Thermotogae species providing novel molecular markers for this phylum. These studies also identified CSIs specific for each order and each family.[11] These indels are the premise for the current taxonomic organization of the Thermotogae, and are strongly supported by phylogenomic analyses.[2][23] Additional CSIs have also been found that are specific for Thermotoga, Pseudothermotoga, Fervidobacterium, and Thermosipho. These CSIs are specific for all species within each respective genus, and absent in all other bacteria, thus are specific markers.[2][23] A clade consisting of the deep-branching species Petrotoga mobilis, Kosmotoga olearia, and Thermotogales bacterium mesG1 was also supported by seven CSIs.[23] Additionally, some CSIs that provided evidence of LGT among the Thermotogae and other prokaryotic groups were also reported.[23] The newly discovered molecular markers provide novel means for identification and circumscription of species from the phylum in molecular terms and for future revisions to its taxonomy. Phylogeny{{see also|Bacterial taxonomy}}The phylogeny based on the work of the All-Species Living Tree Project.[25] {{Clade | style=font-size:100%;line-height:80%|1={{clade |label1=Thermotogales |1={{clade |label1=Thermotogaceae |1={{clade |label1=Thermotoga |1={{clade |1=T. naphthophila |2={{clade |1=T. petrophila |2={{clade |1= T. maritima (type sp.) |2= T. neapolitana }} }} }} |label2=Pseudothermotoga |2={{clade |1={{clade |1= P. hypogea |2= P. thermarum |2={{clade |1= P. subterranea |2={{clade |1= P. elfii |2= P. lettingae }} }} }} }} |label2=Fervidobacteriaceae |2={{clade |label1=Fervidobacterium |1={{clade |1={{clade |1=F. changbaicum |2=F. islandicum |2={{clade |1=F. nodosum (type sp.) |4={{clade |1=F. gondwanense |2=F. riparium }} }} }} |label2=Thermosipho |2={{clade |1=T. activus |2={{clade |1=T. geolei |2={{clade |1= T. atlanticus |2={{clade |1={{clade |1=T. affectus |2=T. melanesiensis |2={{clade |1=T. globiformans |2={{clade |1=T. africanus (type sp.) |2=T. japonicus }} }} }} }} }} }} }} }} |2={{clade |label1=Kosmotogaceae |1={{clade |1=Kosmotoga arenicorallina |2={{clade |label1=Mesotoga |1={{clade |1= M. infera |2= M. prima |label2=Kosmotoga |2={{clade |1= K. olearia (type sp.) |2= K. shengliensis }} }} }} |2={{clade |label1=Mesoaciditogaceae |1=Mesoaciditoga lauensis |label2=Petrotogaceae |2={{clade |label1=Marinitoga |1={{clade |1= M. hydrogenitolerans |2={{clade |1=M. litoralis |2={{clade |1=M. okinawensis |2={{clade |1=M. piezophila |2=M. camini (type sp.) }} }} }} }} |2={{clade |1={{clade |1=Oceanotoga teriensis |label2=Geotoga |2={{clade |1= G. petraea (type sp.) |2= G. subterranea }} }} |2={{clade |1= Defluviitoga tunisiensis |label2=Petrotoga |2={{clade |1= P. sibirica |2={{clade |1= P. olearia |2={{clade |1= P. mexicana |2={{clade |1= P. mobilis |2={{clade |1= P. halophila |2= P. miotherma (type sp.) }} }} }} }} }} }} }} }} }} }} }} }} TaxonomyThe currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LSPN)[26] and the National Center for Biotechnology Information (NCBI).[27]
Notes: ♠ Strain found at the National Center for Biotechnology Information (NCBI) but not listed in the List of Prokaryotic names with Standing in Nomenclature (LPSN) ♥ No strains lodged at National Center for Biotechnology Information NCBI and or listed in the List of Prokaryotic names with Standing in Nomenclature (LPSN) References1. ^1 2 3 {{cite book | author = Huber R., Hannig M. | year = 2006 | title = Thermotogales | url = | journal = Prokaryotes | volume = 7 | issue = | pages = 899–922 | doi = 10.1007/0-387-30747-8_38 | isbn = 978-0-387-25497-5 }} {{Bacteria classification|state=expanded}}{{Life on Earth}}{{Taxonbar|from=Q1146853}}2. ^1 2 3 4 5 6 Gupta, RS (2014) The Phylum Thermotogae. The Prokaryotes 989-1015. Springer Berlin Heidelberg. 3. ^1 2 Reysenbach, A.-L. (2001) Phylum BII. Thermotogae phy. nov. In: Bergey's Manual of Systematic Bacteriology, pp. 369-387. Eds D. R. Boone, R. W. Castenholz. Springer-Verlag: Berlin. 4. ^{{cite journal |doi=10.1128/AEM.02846-09 |pmid=20495053 |author=Nesbo C.L. |author2=Kumaraswamy R. |author3=Dlutek M. |author4=Doolittle W.F. |author5=Foght J. |last-author-amp=yes |date=2010 |title=Searching for mesophilic Thermotogales bacteria: "mesotogas" in the wild |journal=Appl Environ Microbiol |volume=76 |issue=14 |pages=4896–4900 |pmc=2901743}} 5. ^{{cite journal |pmid=9841678 |author=Gupta R.S. |title=Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes |journal=Microbiol Mol Biol Rev |date=1998 |volume=62 |pages=1435–1491 |pmc=98952 |issue=4}} 6. ^{{cite journal |doi=10.1007/s10482-011-9616-8 |pmid=21717204 |author=Gupta R.S. |title=Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes |journal=Antonie van Leeuwenhoek |date=2011 |volume=100 |issue=2 |pages=171–182 |pmc=3133647}} 7. ^{{cite journal |doi=10.1007/s10529-010-0439-x |pmid=20960218 |author=Eriksen N.T. |author2=Riis M.L. |author3=Holm N.K. |author4=Iversen N. |last-author-amp=yes |date=2010 |title=H(2) synthesis from pentoses and biomass in Thermotoga spp. |journal=Biotechnol Lett |volume=33 |issue=2 |pages=293–300}} 8. ^{{cite journal |pmid=17064285 |author=Conners S.B. |author2=Mongodin E.F. |author3=Johnson M.R.|author4=Montero C.I. |author5=Nelson K.E. |author6=Kelly R.M. |last-author-amp=yes |date=2006 |title=Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species |journal=FEMS Microbiol Rev |volume=30 |pages=872–905 |doi=10.1111/j.1574-6976.2006.00039.x |issue=6}} 9. ^{{cite journal |vauthors=Oren A, Garrity GM |title= List of new names and new combinations previously effectively, but not validly, published |journal=Int. J. Syst. Evol. Microbiol.|volume=65 |issue=7 |pages=2017–2025|date=2015 |doi= 10.1099/ijs.0.000317 |url= http://www.microbiologyresearch.org/docserver/fulltext/ijsem/65/7/2017_ijs000317.pdf?expires=1476997064&id=id&accname=sgid023788&checksum=8E31E37C1BCAFB04D0DD96A3BB84151E }} 10. ^{{cite journal |vauthors= Itoh T, Onishi M, Kato S, Iino T, Sakamoto M, Kudo T, Takashina T, Ohkuma M |title=Athalassotoga saccharophila gen. nov. sp. nov. isolated from an acidic terrestrial hot spring of Japan, and proposal of Mesoaciditogales ord. nov., Mesoaciditogaceae fam. nov. in the phylum Thermotogae |journal=Int. J. Syst. Evol. Microbiol. |volume=in press |issue=2 | date=December 2015 |pmid=26651491 |doi=10.1099/ijsem.0.000833|pages=1045–1051}} 11. ^1 {{cite journal |vauthors= Bhandari V, Gupta RS |title=Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations|journal= Antonie van Leeuwenhoek |volume=105 |issue=1 |pages=143–168 | date=January 2014 |pmid=24166034 |doi=10.1007/s10482-013-0062-7}} 12. ^Euzeby JP. List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/t/thermotogales{{Dead link|date=June 2018 |bot=InternetArchiveBot |fix-attempted=no }} . 13. ^{{cite journal |pmid=10198119 |author=Klenk H.P. |author2=Meier T.D. |author3=Durovic P. |display-authors=etal |date=1999 |title=RNA polymerase of Aquifex pyrophilus: Implications for the evolution of the bacterial rpoBC operon and extremely thermophilic bacteria |journal=J Mol Evol |volume=48 |pages=528–541 |issue=5 |doi=10.1007/pl00006496|bibcode=1999JMolE..48..528K }} 14. ^{{cite journal |pmid=10978543 |author=Gupta R.S. |date=2000 |title=The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes |journal=FEMS Microbiol Rev |volume=24 |pages=367–402 |issue=4 |doi=10.1111/j.1574-6976.2000.tb00547.x}} 15. ^{{cite journal |pmid=16513982 |author=Ciccarelli F.D. |author2=Doerks T. |author3=von Mering C. |author4=Creevey C.J. |author5=Snel B. |author6=Bork P. |last-author-amp=yes |date=2006 |title=Toward automatic reconstruction of a highly resolved tree of life |journal=Science |volume=311 |issue=5765 |pages=1283–1287 |doi=10.1126/science.1123061|bibcode=2006Sci...311.1283C |citeseerx=10.1.1.381.9514 }} 16. ^{{cite journal |pmid=12642117 |author=Di Giulio M. |date=2003 |title=The universal ancestor was a thermophile or a hyperthermophile: Tests and further evidence |journal=J Theor Biol |volume=221 |pages=425–436 |issue=3 |doi=10.1006/jtbi.2003.3197}} 17. ^{{cite journal |vauthors=Bhandari V, Naushad HS, Gupta RS|title=Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution |journal=Front Cell Infect Microbiol |volume=2 |year=2012 |pmid=22919687 |doi=10.3389/fcimb.2012.00098|pmc=3417386 |pages=98}} 18. ^{{cite journal |pmid=15179606 |author=Griffiths E. |author2=Gupta R.S. |last-author-amp=yes |date=2004 |title=Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. |journal=International Microbiology |volume=7 |pages=41–52 |issue=1}} 19. ^{{cite journal |pmid=10360571 |author=Nelson K.E. |author2=Clayton R. |author3=Gill S. |display-authors=etal |date=1999 |title=Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima |journal=Nature |volume=399 |pages=323–329 |doi=10.1038/20601 |issue=6734|bibcode=1999Natur.399..323N }} 20. ^{{cite journal |pmid=11230537 |author=Nesbo C.L. |author2=L'Haridon S. |author3=Stetter K.O. |author4=Doolittle W.F. |last-author-amp=yes |date=2001 |title=Phylogenetic analyses of two "Archaeal" genes in Thermotoga maritima reveal multiple transfers between Archaea and Bacteria |journal=Mol Biol Evol |volume=18 |pages=362–375 |issue=3 |doi=10.1093/oxfordjournals.molbev.a003812}} 21. ^{{cite journal |pmid=10830951 |author=Ochman H. |author2=Lawrence J.G. |author3=Groisman E.A. |last-author-amp=yes |date=2000 |title=Lateral gene transfer and the nature of bacterial innovation |journal=Nature |volume=405 |pages=299–304 |doi=10.1038/35012500 |issue=6784|bibcode=2000Natur.405..299O }} 22. ^{{cite journal |doi=10.1073/pnas.0901260106 |pmid=19307556 |author=Zhaxybayeva O. |author2=Swithers K.S. |author3=Lapierre P. |display-authors=etal |date=2009 |title=On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales |journal=Proc Natl Acad Sci U S A |volume=106 |issue=14 |pages=5865–5870 |pmc=2667022|bibcode=2009PNAS..106.5865Z }} 23. ^1 2 3 4 5 6 {{cite journal |doi=10.1007/s10482-011-9576-z |pmid=21503713 |author=Gupta R.S. |author2=Bhandari V. |last-author-amp=yes |date=2011 |title=Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups |journal=Antonie van Leeuwenhoek |volume=100 |issue=1 |pages=1–34}} 24. ^{{cite journal |doi=10.1007/s10482-010-9492-7 |pmid=20706870 |author=Kunisawa T |title=Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison |journal=Antonie van Leeuwenhoek |date=2011 |volume=99 |issue=2 |pages=417–422}} 25. ^{{cite web | url=http://www.arb-silva.de/fileadmin/silva_databases/living_tree/LTP_release_123/LTPs123_SSU_tree.pdf | title=16S rRNA-based LTP release 123 (full tree) | publisher=Silva Comprehensive Ribosomal RNA Database | accessdate=2016-03-20}} 26. ^{{cite web |author = J.P. Euzéby | url=http://www.bacterio.net/-classifphyla.html#Thermotogae |title=Thermotogae |publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN)| accessdate=2016-03-20}} 27. ^{{cite web |author = Sayers| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=200918&lvl=6&lin |title=Thermotogae |publisher=National Center for Biotechnology Information (NCBI) taxonomy database |accessdate=2016-03-20 |display-authors=etal}} 5 : Bergey's volume 1|Thermophiles|Thermozoa|Bacteria phyla|Thermotogae |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。