释义 |
- References
In mathematics, Tate's isogeny theorem, proved by {{harvs|txt|last=Tate|year=1966|authorlink=John Tate}}, states that two abelian varieties over a finite field are isogeneous if and only if their Tate modules are isomorphic (as Galois representations). References- {{Citation | last1=Mumford | first1=David | author1-link=David Mumford | title=Abelian varieties | origyear=1970 | publisher=American Mathematical Society | location=Providence, R.I. | series=Tata Institute of Fundamental Research Studies in Mathematics | isbn=9788185931869 | oclc=138290 |mr=0282985 | year=2008 | volume=5}}
- {{Citation | last1=Tate | first1=John | author1-link=John Tate | title=Endomorphisms of abelian varieties over finite fields | doi=10.1007/BF01404549 |mr=0206004 | year=1966 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=2 | pages=134–144}}
{{Abstract-algebra-stub}} 2 : Abelian varieties|Theorems in algebraic geometry |