请输入您要查询的百科知识:

 

词条 The long tailpipe
释义

  1. Description

  2. Carbon footprint in selected countries

  3. Carbon footprint in the United States

  4. Criticism

  5. References

  6. External links

The long tailpipe is an argument stating that usage of electric vehicles does not always result in fewer emissions (e.g. greenhouse gases) compared to those from non-electric vehicles. While the argument acknowledges that plug-in electric vehicles operating in all-electric mode have no greenhouse gas emissions from the onboard source of power, it claims that these emissions are shifted from the vehicle tailpipe to the location of the electrical generation plants. From the point of view of a well-to-wheel assessment, the extent of the actual carbon footprint depends on the fuel and technology used for electricity generation.

Description

{{See also|Plug-in electric vehicle#Air pollution and greenhouse gas emissions|l1=Greenhouse gas emissions in plug-in electric vehicles|Electric car#Air pollution and carbon emissions|l2=air pollution and carbon emissions in electric cars|Plug-in hybrid#Greenhouse gas emissions|l3=greenhouse gas emissions in plug-in hybrids}}Plug-in electric vehicles operating in all-electric mode do not emit greenhouse gases from the onboard source of power but emissions are shifted to the location of the generation plants. From the point of view of a well-to-wheel assessment, the extent of the actual carbon footprint depends on the fuel and technology used for electricity generation. From the perspective of a full life cycle analysis, the electricity used to recharge the batteries must be generated from renewable or clean sources such as wind, solar, hydroelectric, or nuclear power for PEVs to have almost none or zero well-to-wheel emissions.[1][2] On the other hand, when PEVs are recharged from coal-fired plants, they usually produce slightly more greenhouse gas emissions than internal combustion engine vehicles and higher than hybrid electric vehicles.[1][3]

Because plug-in electric vehicles do not produce emissions at the point of operation are often perceived as being environmentally friendlier than vehicles driven through internal combustion. Assessing the validity of that perception is difficult due to the greenhouse gases generated by the power plants that provide the electricity to charge the vehicles' batteries.[4][5] For example, the New York Times reported that a Nissan Leaf driving in Los Angeles would have the same environmental impact as a gasoline-powered car with {{convert|79|mpgUS|abbr=on}} compared to the same trip in Denver would only have the equivalent of {{convert|33|mpgUS|abbr=on}}.[6] The U.S. Department of Energy published a concise description of the problem: "Electric vehicles (EVs) themselves emit no greenhouse gases (GHGs), but substantial emissions can be produced 'upstream' at the electric power plant."[7]

Carbon footprint in selected countries

A study published in the UK in April 2013 assessed the carbon footprint of plug-in electric vehicles in 20 countries. As a baseline the analysis established that manufacturing emissions account for 70 g CO2/km. The study found that in countries with coal-intensive generation, PEVs are no different from conventional petrol-powered vehicles. Among these countries are China, Indonesia, Australia, South Africa and India. A pure electric car in India generates emissions comparable to a {{convert|20|mpgUS|abbr=on}} petrol car. The country ranking was led by Paraguay, where all electricity is produced from hydropower, and Iceland, where electricity production relies on renewable power, mainly hydro and geothermal power. Resulting carbon emissions from an electric car in both countries are 70 g CO2/km, which is equivalent to a {{convert|220|mpgUS|abbr=on}} petrol car, and correspond to manufacturing emissions. Next in the ranking are other countries with similar low carbon electricity generation, including Sweden (mostly hydro and nuclear power ), Brazil (mainly hydropower) and France (predominantly nuclear power). Countries ranking in the middle include Japan, Germany, the UK and the United States.[8][9][10]

The following table shows the emissions intensity estimated in the study for each of the 20 countries, and the corresponding emissions equivalent in miles per US gallon of a petrol-powered car:

Country comparison of full life cycle assessment
of greenhouse gas emissions resulting from charging plug-in electric cars and
emissions equivalent in terms of miles per US gallon of a petrol-powered car[8][10]
CountryPEV well-to-wheels
carbon dioxide equivalent
emissions per electric car
expressed in (CO2e/km)
Power
source
PEV well-to-wheels
emissions equivalent
in terms of mpg US
of petrol-powered car
Equivalent
petrol car
{{PAR}}70Low carbon218|mpgUS|L/100km|abbr=on}}Hybrid
multiples
{{flag|Iceland}}70217|mpgUS|L/100km|abbr=on}}
{{SWE}}81 159|mpgUS|L/100km|abbr=on}}
{{BRA}}89134|mpgUS|L/100km|abbr=on}}
{{FRA}}93123|mpgUS|L/100km|abbr=on}}
{{CAN}}115 Fossil light87|mpgUS|L/100km|abbr=on}}Beyond
hybrid
{{ESP}}146 61|mpgUS|L/100km|abbr=on}}
{{RUS}}15557|mpgUS|L/100km|abbr=on}}
{{ITA}}170Broad mix50|mpgUS|L/100km|abbr=on}}New
hybrid
{{JAP}}175 48|mpgUS|L/100km|abbr=on}}
{{GER}}179 47|mpgUS|L/100km|abbr=on}}
{{UK}}18944|mpgUS|L/100km|abbr=on}}
{{USA}}202Fossil heavy40|mpgUS|L/100km|abbr=on}}Efficient
petrol
{{MEX}}203 40|mpgUS|L/100km|abbr=on}}
{{TUR}}204 40|mpgUS|L/100km|abbr=on}}
{{CHN}}258Coal based30|mpgUS|L/100km|abbr=on}}Average
petrol
{{IDN}}27028|mpgUS|L/100km|abbr=on}}
{{AUS}}292 26|mpgUS|L/100km|abbr=on}}
{{SAF}}318 {{Convert|24|mpgUS|L/100km|abbr=on}}
{{IND}}37020|mpgUS|L/100km|abbr=on}}
Note: Electric car manufacturing emissions account for 70 g CO2/km
Source: Shades of Green: Electric Cars’ Carbon Emissions Around the Globe, Shrink That Footprint, February 2013.
[10]

Carbon footprint in the United States

In the case of the United States, the Union of Concerned Scientists (UCS) conducted a study in 2012 to assess average greenhouse gas emissions resulting from charging plug-in car batteries from the perspective of the full life-cycle (well-to-wheel analysis) and according to fuel and technology used to generate electric power by region. The study used the Nissan Leaf all-electric car to establish the analysis baseline, and electric-utility emissions are based on EPA's 2007 estimates. The UCS study expressed the results in terms of miles per gallon instead of the conventional unit of grams of greenhouse gases or carbon dioxide equivalent emissions per year in order to make the results more friendly for consumers. The study found that in areas where electricity is generated from natural gas, nuclear, hydroelectric or renewable sources, the potential of plug-in electric cars to reduce greenhouse emissions is significant. On the other hand, in regions where a high proportion of power is generated from coal, hybrid electric cars produce less CO2 equivalent emissions than plug-in electric cars, and the best fuel efficient gasoline-powered subcompact car produces slightly less emissions than a PEV. In the worst-case scenario, the study estimated that for a region where all energy is generated from coal, a plug-in electric car would emit greenhouse gas emissions equivalent to a gasoline car rated at a combined city/highway driving fuel economy of {{Convert|30|mpgUS|abbr=on}}. In contrast, in a region that is completely reliant on natural gas, the PEV would be equivalent to a gasoline-powered car rated at{{Convert|50|mpgUS|abbr=on}}.[11][12]

The following table shows a representative sample of cities within each of the three categories of emissions intensity used in the UCS study, showing the corresponding miles per gallon equivalent for each city as compared to the greenhouse gas emissions of a gasoline-powered car:

Regional comparison of full life cycle assessment
of greenhouse gas emissions resulting from charging plug-in electric vehicles
expressed in terms of miles per gallon of a gasoline-powered car with equivalent emissions[11][13][14]
Rating scale
by emissions intensity
expressed as
miles per gallon
CityPEV well-to-wheels
carbon dioxide equivalent
(CO2e) emissions per year
expressed as mpg US
Percent reduction in
CO2e emissions
compared with
27 mpg US average
new compact car
Combined EPA's rated
fuel economy and
GHG emissions
for reference
gasoline-powered car[15]
Best
Lowest CO2e emissions
equivalent to
over{{Convert|50|mpgUS|L/100km|abbr=on}}
Juneau, Alaska112|mpgUS|L/100km|abbr=on}}315%2012 Toyota Prius/Prius c
{{Convert|50|mpgUS|L/100km|abbr=on}}
San Francisco79|mpgUS|L/100km|abbr=on}}193%
New York City74|mpgUS|L/100km|abbr=on}}174%
Portland, Oregon73|mpgUS|L/100km|abbr=on}}170% Greenhouse gas emissions (grams/mile)
Boston67|mpgUS|L/100km|abbr=on}} 148% Tailpipe CO2Upstream GHG
Washington, D.C.58|mpgUS|L/100km|abbr=on}}115% 178 g/mi (111 g/km) 44 g/mi (27 g/km)
Better
Moderate CO2e emissions
equivalent to between
{{Convert|41|mpgUS|L/100km|abbr=on}} to
{{Convert|50|mpgUS|L/100km|abbr=on}}
Phoenix, Arizona48|mpgUS|L/100km|abbr=on}}78%2012 Honda Civic Hybrid
{{Convert|44|mpgUS|L/100km|abbr=on}}
Miami47|mpgUS|L/100km|abbr=on}}74%
Houston46|mpgUS|L/100km|abbr=on}}70% Greenhouse gas emissions (grams/mile)
Columbus, Ohio41|mpgUS|L/100km|abbr=on}}52% Tailpipe CO2Upstream GHG
Atlanta41|mpgUS|L/100km|abbr=on}}52% 202 g/mi (125 g/km)50 g/mi (31 g/km)
Good
Highest CO2e emissions
equivalent to between
{{Convert|31|mpgUS|L/100km|abbr=on}} to
{{Convert|40|mpgUS|L/100km|abbr=on}}
Detroit38|mpgUS|L/100km|abbr=on}}41% 2012 Chevrolet Cruze
{{Convert|30|mpgUS|L/100km|abbr=on}}
Des Moines, Iowa37|mpgUS|L/100km|abbr=on}}37%
St. Louis, Missouri36|mpgUS|L/100km|abbr=on}} 33% Greenhouse gas emissions (grams/mile)
Wichita, Kansas35|mpgUS|L/100km|abbr=on}}30% Tailpipe CO2Upstream GHG
Denver33|mpgUS|L/100km|abbr=on}} 22% 296 g/mi (184 g/km) 73 g/mi (45 g/km)
Source: Union of Concerned Scientists, 2012.[11]
Notes: The Nissan Leaf is the baseline car for the assessment, with an energy consumption rated by EPA at 34 kWh/100 mi or 99 miles per gallon gasoline equivalent ({{convert|99|mpgus|L/100km|abbr=on|disp=out|1}}) combined.
The ratings are based on a region's mix of electricity sources and its average emissions intensity over the course of a year. In practice the electricity grid is very dynamic, with the mix of
power plants constantly changing in response to hourly, daily and seasonal electricity demand, and availability of electricity resources.

An analysis of EPA power plant data from 2016 showed improvement in mpg-equivalent ratings of electric cars for nearly all regions, with a national weighted average of 80 mpg for electric vehicles.[16] The regions with the highest ratings include upstate New York, New England, and California at over 100 mpg, while only Oahu, Wisconsin, and part of Illinois and Missouri are below 40 mpg, though still higher than nearly all gasoline cars.

Criticism

The long tailpipe has been the target of criticism, ranging from claims that many estimates are methodologically flawed to estimates that state that electricity generation in the United States will become less carbon-intensive over time.[17] Tesla Motors CEO Elon Musk published his own criticism of the long tailpipe.[18]

The extraction and refining of carbon based fuels and its distribution is in itself an energy intensive industry contributing to CO2 emissions. In 2007 U.S. refineries consumed 39353 million kWh, 70769 million lbs of steam and 697593 million cubic feet of Natural Gas. And the refining energy efficiency for gasoline is estimated to be, at best, 87.7%.[19]

References

1. ^{{Cite book | last = Sperling, Daniel and Deborah Gordon | title = Two billion cars: driving toward sustainability |year =2009| pages=22–26 and 114–139|publisher =Oxford University Press, New York| isbn=978-0-19-537664-7}}
2. ^{{cite book|title=Plug-In Electric Vehicles: What Role for Washington?|editor=David B. Sandalow|year=2009|publisher=The Brookings Institution|isbn=978-0-8157-0305-1|edition=1st.|url=http://www.brookings.edu/press/Books/2009/pluginelectricvehicles.aspx|pages=2–5}} See definition on pp. 2.
3. ^{{cite news|url=http://www.scientificamerican.com/article.cfm?id=interactive-plug-in-hybrids|title=The Dirty Truth about Plug-in Hybrids, Made Interactive|publisher=Scientific American|date=July 2010|accessdate=2010-10-16}} Click on the map to see the results for each region.
4. ^{{cite web|title=Analyzing effects from well to wheel to air (the long tailpipe)|url=http://greentransportation.info/analyzing-effects-from-well-to-wheel-to-air-the-long-tailpip|work=Green Transportation|accessdate=20 December 2012|date=27 Oct 2011}}
5. ^{{cite news|last=Hickman|first=Leo|title=Are electric cars bad for the environment?|url=https://www.theguardian.com/environment/blog/2012/oct/05/electric-cars-emissions-bad-environment|accessdate=20 December 2012|newspaper=The Guardian|date=5 October 2012}}
6. ^{{cite news|last=STENQUIST|first=PAUL|title=How Green Are Electric Cars? Depends on Where You Plug In|url=https://www.nytimes.com/2012/04/15/automobiles/how-green-are-electric-cars-depends-on-where-you-plug-in.html|accessdate=20 December 2012|newspaper=New York Times|date=30 April 2012}}
7. ^{{cite web|title=Electric Power|url=http://www.fueleconomy.gov/feg/evghg.shtml|work=Energy Information Administration|publisher=U.S. Department of Energy|accessdate=21 December 2012}}
8. ^{{cite news|url=https://www.theguardian.com/environment/blog/2013/feb/07/india-green-country-electric-cars|title=India named least green country for electric cars |work=The Guardian|date=2013-02-07|accessdate=2013-07-08}}
9. ^{{cite web|url=http://www.avem.fr/news?id=3964|title=Véhicules électriques et émissions de CO2 – de 70 à 370 g CO2/km selon les pays|language=French|trans-title=Electric Vehicles and CO2 emissions - 70 to 370 g CO2/km by country |author=Michaël Torregrossa|publisher= Association pour l'Avenir du Véhicule Electrique Méditerranéen (AVEM)|date=2013-03-21|accessdate=2013-07-08}}
10. ^{{cite web|url=http://shrinkthatfootprint.com/electric-car-emissions#.UWMjH5xsYH4.email|title=Shades of Green: Electric Cars’ Carbon Emissions Around the Globe|author=Lindsay Wilson|publisher=Shrink That Footprint|date=February 2013|accessdate=2013-07-08}}
11. ^{{cite web|url=http://www.ucsusa.org/assets/documents/clean_vehicles/electric-car-global-warming-emissions-report.pdf|title=State of Charge: Electric Vehicles' Global Warming Emissions and Fuel-Cost Savings across the United States|author=Don Anair and Amine Mahmassani|publisher=Union of Concerned Scientists |date=April 2012|accessdate=2012-04-16}} pp. 16-20.
12. ^{{cite news|url=https://www.nytimes.com/2012/04/15/automobiles/how-green-are-electric-cars-depends-on-where-you-plug-in.html?_r=1&emc=eta1&pagewanted=all|title=How Green Are Electric Cars? Depends on Where You Plug In|author=Paul Stenquist|work=The New York Times|date=2012-04-13|accessdate=2012-04-14}}
13. ^{{cite news|url=https://www.nytimes.com/interactive/2012/04/13/automobiles/Sorting-Out-the-Power-Grid.html?emc=eta1|title=Carbon In, Carbon Out: Sorting Out the Power Grid|author=Paul Stenquist|work=The New York Times|date=2012-04-13|accessdate=2012-04-14}} See map for regional results
14. ^{{cite news|url=https://www.nytimes.com/imagepages/2012/04/15/automobiles/15POWERemissions-ch.html?ref=automobiles|title=When it Comes to Carbon Dioxide, Lower is Better and Zero is Perfect|author=Paul Stenquist|work=The New York Times|date=2012-04-13|accessdate=2012-04-14}}
15. ^{{cite web|url= http://www.fueleconomy.gov/feg/Find.do?action=sbs&id=31767&id=32183&id=31190&id=31370&#tab2|title=Compare side-by-side|publisher=U.S. Department of Energy and U.S. Environmental Protection Agency|date=2012-04-13|accessdate=2012-04-15}} Energy and Environment tab: cars selected Toyota Prius, Prius c, Honda Civic Hybrid, and Chevrolet Cruze automatical, all model year 2012.
16. ^{{Cite news|url=https://blog.ucsusa.org/dave-reichmuth/new-data-show-electric-vehicles-continue-to-get-cleaner|title=New Data Show Electric Vehicles Continue to Get Cleaner|date=2018-03-08|work=Union of Concerned Scientists|access-date=2018-08-26|language=en-US}}
17. ^{{cite web|last=Hall|first=Dean|title=Holes in the Long Tailpipe|url=http://www.neohouston.com/2010/04/holes-in-the-long-tailpipe/|publisher=neoHOUSTON|accessdate=21 December 2012|date=5 Apr 2010}}
18. ^{{cite web|last=Musk|first=Elon|title=The Secret Tesla Motors Master Plan (just between you and me)|url=http://www.teslamotors.com/blog/secret-tesla-motors-master-plan-just-between-you-and-me|work=Tesla Blog|publisher=Tesla Motors|accessdate=20 December 2012}}
19. ^{{cite web|last=Wang|first=Michael|title=Estimation of Energy Efficiencies of U.S. Petroleum Refineries|url=https://greet.es.anl.gov/files/hl9mw9i7|publisher=Argonne National Laboratory|accessdate=6 March 2016|date=Mar 2008}}

External links

  • Greenhouse Gas Emissions for Electric and Plug-In Hybrid Electric Vehicles, web tool to estimate GHG by car model and zip code, U.S. Department of Energy and U.S. Environmental Protection Agency.
  • Shades of Green - Electric Car's Carbon Emissions Around the Globe, Shrink that Footprint, February 2013.
  • State of Charge: Electric Vehicles' Global Warming Emissions and Fuel-Cost Savings across the United States, Union of Concerned Scientists, April 2012.

3 : Electric power generation|Greenhouse gas emissions|Electric vehicles

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 15:13:41