请输入您要查询的百科知识:

 

词条 Truncated order-4 octagonal tiling
释义

  1. Constructions

  2. Dual tiling

  3. Symmetry

  4. Related polyhedra and tiling

  5. References

  6. See also

  7. External links

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U84_01}}

In geometry, the truncated order-4 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,4}. A secondary construction t0,1,2{8,8} is called a truncated octaoctagonal tiling with two colors of hexakaidecagons.

Constructions

There are two uniform constructions of this tiling, first by the [8,4] kaleidoscope, and second by removing the last mirror, [8,4,1+], gives [8,8], (*882).

Two uniform constructions of 4.8.4.8
NameTetraoctagonalTruncated octaoctagonal
Image
Symmetry(*842)
{{CDD>node_c1|8|node_c2|4|node_c3}}
+]
(*882)
{{CDD>node_c1|split1-88|nodeab_c2}} = {{CDD|node_c1|8|node_c2|4|node_h0}}
Symbolt{8,4}tr{8,8}
Coxeter diagramnode_1|8|node_1|4|node}}node_1|8|node_1|8|node_1}}

Dual tiling

The dual tiling, Order-8 tetrakis square tiling has face configuration V4.16.16, and represents the fundamental domains of the [8,8] symmetry group.

Symmetry

The dual of the tiling represents the fundamental domains of (*882) orbifold symmetry. From [8,8] symmetry, there are 15 small index subgroup by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images unique mirrors are colored red, green, and blue, and alternatedly colored triangles show the location of gyration points. The [8+,8+], (44×) subgroup has narrow lines representing glide reflections. The subgroup index-8 group, [1+,8,1+,8,1+] (4444) is the commutator subgroup of [8,8].

One larger subgroup is constructed as [8,8*], removing the gyration points of (8*4), index 16 becomes (*44444444), and its direct subgroup [8,8*]+, index 32, (44444444).

The [8,8] symmetry can be doubled by a mirror bisecting the fundamental domain, and creating *884 symmetry.

Small index subgroups of [8,8] (*882)
Index124
Diagram
Coxeter{{CDD>node_c1|8|node_c3|8|node_c2}}+,8,8]
{{CDD>node_h0|8|node_c3|8|node_c2}} = {{CDD|label4|branch_c3|split2-88|node_c2}}
+]
{{CDD>node_c1|8|node_c3|8|node_h0}} = {{CDD|node_c1|split1-88|branch_c3|label4}}
+,8]
{{CDD>node_c1|8|node_h0|8|node_c2}} = {{CDD|label4|branch_c1|2a2b-cross|branch_c2|label4}}
+,8,8,1+]
{{CDD>node_h0|8|node_c3|8|node_h0}} = {{CDD|label4|branch_c3|4a4b-cross|branch_c3|label4}}
+,8+]
{{CDD>node_h2|8|node_h4|8|node_h2}}
Orbifold*882*884*4242*444444×
Semidirect subgroups
Diagram
Coxeter+]
{{CDD>node_c1|8|node_h2|8|node_h2}}
+,8]
{{CDD>node_h2|8|node_h2|8|node_c2}}
+)]
{{CDD>node_c3|split1-88|branch_h2h2|label2}}
+,8,1+]
{{CDD>node_c1|8|node_h0|8|node_h0}} = {{CDD|node_c1|8|node_h2|8|node_h0}} = {{CDD|node_c1|split1-88|branch_h2h2|label4}}
= {{CDD|node_c1|8|node_h0|8|node_h2}} = {{CDD|label4|branch_c1|2a2b-cross|branch_h2h2|label4}}
+,8,1+,8]
{{CDD>node_h0|8|node_h0|8|node_c2}} = {{CDD|node_h0|8|node_h2|8|node_c2}} = {{CDD|label4|branch_h2h2|split2-88|node_c2}}
= {{CDD|node_h2|8|node_h0|8|node_c2}} = {{CDD|label4|branch_h2h2|2a2b-cross|branch_c2|label4}}
Orbifold8*42*444*44
Direct subgroups
Index248
Diagram
Coxeter+
{{CDD>node_h2|8|node_h2|8|node_h2}}
+]+
{{CDD>node_h0|8|node_h2|8|node_h2}} = {{CDD|label4|branch_h2h2|split2-88|node_h2}}
+,8]+
{{CDD>node_h2|8|node_h2|8|node_h0}} = {{CDD|node_h2|split1-88|branch_h2h2|label4}}
+,8]+
{{CDD>labelh|node|split1-88|branch_h2h2|label2}} = {{CDD|label4|branch_h2h2|2xa2xb-cross|branch_h2h2|label4}}
[8+,8+]+ = [1+,8,1+,8,1+]
{{CDD|node_h4|split1-88|branch_h4h4|label2}} = {{CDD|node_h0|8|node_h0|8|node_h0}} = {{CDD|node_h0|8|node_h2|8|node_h0}} = {{CDD|label4|branch_h2h2|4a4b-cross|branch_h2h2|label4}}
Orbifold88288442424444
Radical subgroups
Index1632
Diagram
Coxeter{{CDD>node_c1|8|node_g|8|3sg|node_g}}{{CDD>node_g|8|3sg|node_g|8|node_c2}}+
{{CDD>node_h0|8|node_g|8|3sg|node_g}}
+
{{CDD>node_g|8|3sg|node_g|8|node_h0}}
Orbifold*4444444444444444

Related polyhedra and tiling

{{Truncated figure3 table}}{{Order 8-4 tiling table}}{{Order 8-8 tiling table}}

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

See also

{{Commonscat|Uniform tiling 4-16-16}}
  • Square tiling
  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

External links

  • {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
  • {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch
{{Tessellation}}

6 : Hyperbolic tilings|Isogonal tilings|Order-4 tilings|Truncated tilings|Uniform tilings|Octagonal tilings

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 4:09:00