请输入您要查询的百科知识:

 

词条 Truncated triapeirogonal tiling
释义

  1. Symmetry

  2. Related polyhedra and tiling

  3. See also

  4. References

  5. External links

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|Ui3_012}}

In geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}.

Symmetry

The dual of this tiling represents the fundamental domains of [∞,3], *∞32 symmetry. There are 3 small index subgroup constructed from [∞,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A special index 4 reflective subgroup, is [(∞,∞,3)], (*∞∞3), and its direct subgroup [(∞,∞,3)]+, (∞∞3), and semidirect subgroup [(∞,∞,3+)], (3*∞).[1] Given [∞,3] with generating mirrors {0,1,2}, then its index 4 subgroup has generators {0,121,212}.

An index 6 subgroup constructed as [∞,3*], becomes [(∞,∞,∞)], (*∞∞∞).

Small index subgroups of [∞,3], (*∞32)
Index1234681224
Diagrams
Coxeter
(orbifold)
{{CDD>node_c1|infin|node_c2|3|node_c2}} = {{CDD|node_c2|split1-i3|branch_c1-2|label2}}
(*∞32)
+,∞,3]
{{CDD>node_h0|infin|node_c2|3|node_c2}} = {{CDD|labelinfin|branch_c2|split2|node_c2}}
(*∞33)
+]
{{CDD>node_c1|infin|node_h2|3|node_h2}}
(3*∞)
[∞,∞]

(*∞∞2)
[(∞,∞,3)]

(*∞∞3)
{{CDD>node_c1|infin|node_g|3sg|node_g}} = {{CDD|labelinfin|branch_c1|split2-ii|node_c1}}
(*∞3)
[∞,1+,∞]

(*(∞2)2)
[(∞,1+,∞,3)]

(*(∞3)2)
[1+,∞,∞,1+]

(*∞4)
[(∞,∞,3*)]

(*∞6)
Direct subgroups
Index246812162448
Diagrams
Coxeter
(orbifold)
+
{{CDD>node_h2|infin|node_h2|3|node_h2}} = {{CDD|node_h2|split1-i3|branch_h2h2|label2}}
(∞32)
[∞,3+]+
{{CDD|node_h0|infin|node_h2|3|node_h2}} = {{CDD|labelinfin|branch_h2h2|split2|node_h2}}
(∞33)
[∞,∞]+

(∞∞2)
[(∞,∞,3)]+

(∞∞3)
+
{{CDD>node_h2|infin|node_g|3sg|node_g}} = {{CDD|labelinfin|branch_h2h2|split2-ii|node_h2}}
(∞3)
[∞,1+,∞]+

(∞2)2
[(∞,1+,∞,3)]+

(∞3)2
[1+,∞,∞,1+]+

(∞4)
[(∞,∞,3*)]+

(∞6)

Related polyhedra and tiling

{{Order i-3 tiling table}}

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram {{CDD|node_1|p|node_1|3|node_1}}. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

{{Omnitruncated table}}

See also

{{Commons category|Uniform tiling 4-6-i}}
  • List of uniform planar tilings
  • Tilings of regular polygons
  • Uniform tilings in hyperbolic plane

References

1. ^Norman W. Johnson and Asia Ivic Weiss, Quadratic Integers and Coxeter Groups, Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336  
{{refbegin}}
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

External links

  • {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
  • {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
{{Tessellation}}

5 : Apeirogonal tilings|Hyperbolic tilings|Isogonal tilings|Truncated tilings|Uniform tilings

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 12:58:18