请输入您要查询的百科知识:

 

词条 Tschuprow's T
释义

  1. Definition

     Properties  Estimation 

  2. See also

  3. References

  

Tschuprow's T

In statistics, Tschuprow's T is a measure of association between two nominal variables, giving a value between 0 and 1 (inclusive). It is closely related to Cramér's V, coinciding with it for square contingency tables.

It was published by Alexander Tschuprow (alternative spelling: Chuprov) in 1939.[1]

Definition

For an r × c contingency table with r rows and c columns, let be the proportion of the population in cell and let

and

Then the mean square contingency is given as

and Tschuprow's T as

Properties

T equals zero if and only if independence holds in the table, i.e., if and only if . T equals one if and only there is perfect dependence in the table, i.e., if and only if for each i there is only one j such that and vice versa. Hence, it can only equal 1 for square tables. In this it differs from Cramér's V, which can be equal to 1 for any rectangular table.

Estimation

If we have a multinomial sample of size n, the usual way to estimate T from the data is via the formula

where is the proportion of the sample in cell . This is the empirical value of T. With the Pearson chi-square statistic, this formula can also be written as

See also

Other measures of correlation for nominal data:
  • Cramér's V
  • Phi coefficient
  • Uncertainty coefficient
  • Lambda coefficient
Other related articles:
  • Effect size
{{more citations needed|date=October 2011}}

References

1. ^Tschuprow, A. A. (1939) Principles of the Mathematical Theory of Correlation; translated by M. Kantorowitsch. W. Hodge & Co.
  • Liebetrau, A. (1983). Measures of Association (Quantitative Applications in the Social Sciences). Sage Publications

1 : Summary statistics for contingency tables

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 13:11:29