请输入您要查询的百科知识:

 

词条 Universal representation (C*-algebra)
释义

  1. Formal definition and properties

     States of Φ(A)  Bounded functionals of Φ(A)  Ideals of Φ(A)  Representations of A  Ultraweakly continuous, and singular components 

  2. Applications

     Christensen–Haagerup principle 

  3. See also

  4. References

{{unreferenced|date=June 2015}}

In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as universal representation techniques in the literature.

Formal definition and properties

Definition. Let A be a C*-algebra with state space S. The representation

on the Hilbert space is known as the universal representation of A.

As the universal representation is faithful, A is *-isomorphic to the C*-subalgebra Φ(A) of B(HΦ).

States of Φ(A)

With τ a state of A, let πτ denote the corresponding GNS representation on the Hilbert space Hτ. Using the notation defined here, τ is ωx ∘ πτ for a suitable unit vector x(=xτ) in Hτ. Thus τ is ωy ∘ Φ, where y is the unit vector ∑ρ∈Syρ in HΦ, defined by yτ=x, yρ=0(ρ≠τ). Since the mapping τ → τ ∘ Φ−1 takes the state space of A onto the state space of Φ(A), it follows that each state of Φ(A) is a vector state.

Bounded functionals of Φ(A)

Let Φ(A) denote the weak-operator closure of Φ(A) in B(HΦ). Each bounded linear functional ρ on Φ(A) is weak-operator continuous and extends uniquely preserving norm, to a weak-operator continuous linear functional {{overline|ρ}} on the von Neumann algebra Φ(A). If ρ is hermitian, or positive, the same is true of {{overline|ρ}}. The mapping ρ → {{overline|ρ}} is an isometric isomorphism from the dual space Φ(A)* onto the predual of Φ(A). As the set of linear functionals determining the weak topologies coincide, the weak-operator topology on Φ(A) coincides with the ultraweak topology. Thus the weak-operator and ultraweak topologies on Φ(A) both coincide with the weak topology of Φ(A) obtained from its norm-dual as a Banach space.

Ideals of Φ(A)

If K is a convex subset of Φ(A), the ultraweak closure of K (denoted by K)coincides with the strong-operator, weak-operator closures of K in B(HΦ). The norm closure of K is Φ(A) ∩ K. One can give a description of norm-closed left ideals in Φ(A) from the structure theory of ideals for von Neumann algebras, which is relatively much more simple. If K is a norm-closed left ideal in Φ(A), there is a projection E in Φ(A) such that

If K is a norm-closed two-sided ideal in Φ(A), E lies in the center of Φ(A).

Representations of A

If π is a representation of A, there is a projection P in the center of Φ(A) and a *-isomorphism α from the von Neumann algebra Φ(A)P onto π(A) such that π(a) = α(Φ(a)P) for each a in A. This can be conveniently captured in the commutative diagram below :

Here ψ is the map that sends a to aP, α0 denotes the restriction of α to Φ(A)P, ι denotes the inclusion map.

As α is ultraweakly bicontinuous, the same is true of α0. Moreover, ψ is ultraweakly continuous, and is a *-isomorphism if π is a faithful representation.

Ultraweakly continuous, and singular components

Let A be a C*-algebra acting on a Hilbert space H. For ρ in A* and S in Φ(A), let Sρ in A* be defined by Sρ(a) = {{overline|ρ∘Φ−1}}(Φ(a)S) for all a in A. If P is the projection in the above commutative diagram when π:AB(H) is the inclusion mapping, then ρ in A* is ultraweakly continuous if and only if ρ = Pρ. A functional ρ in A* is said to be singular if Pρ = 0.

Each ρ in A* can be uniquely expressed in the form ρ=ρus, with ρu ultraweakly continuous and ρs singular. Moreover, ||ρ||=||ρu||+||ρs|| and if ρ is positive, or hermitian, the same is true of ρu, ρs.

Applications

Christensen–Haagerup principle

Let f and g be continuous, real-valued functions on C4m and C4n, respectively, σ1, σ2, ..., σm be ultraweakly continuous, linear functionals on a von Neumann algebra R acting on the Hilbert space H, and ρ1, ρ2, ..., ρn be bounded linear functionals on R such that, for each a in R,

Then the above inequality holds if each ρj is replaced by its ultraweakly continuous component (ρj)u.

See also

{{Empty section|date=June 2015}}

References

  • Kadison, Richard, Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory, American Mathematical Society. {{ISBN|978-0821808191}}.
  • Kadison, Richard, Fundamentals of the Theory of Operator Algebras, Vol. II : Advanced Theory, American Mathematical Society. {{ISBN|978-0821808207}}.
  • {{citation

| last = Kadison | first = Richard V. | authorlink = Richard Kadison
| issue = 1
| journal = Journal of Operator Theory
| mr = 1277964
| pages = 57–67
| title = On an inequality of Haagerup–Pisier
| url = http://www.theta.ro/jot/archive/1993-029-001/1993-029-001-004.html
| volume = 29
| year = 1993}}.{{DEFAULTSORT:Universal representation (C-algebra)}}

2 : Operator algebras|C*-algebras

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 4:22:59