词条 | Yu Mao-Hong |
释义 |
[4] His unified strength theory (UST) has found acceptance as generalized classical strength theory.[5][6] It contains the following nonparametric strength theories and criteria:
and three one-parameter criteria: the Mohr–Coulomb theory (Single-Shear-Theory (SST)), the Sdobyrev[10] (Pisarenko-Lebedev)[11][12] criterion, and the Twin-Shear-Theory (TST). The Unified Yield Criterion (UYC) as a part of the UST is used in the theory of plasticity (physics). Curriculum vitae
Selected books
Selected articles
Awards
References1. ^Teodorescu, P.P. (Bucureşti). (2006). Review: Unified Strength Theory and its applications, Zentralblatt MATH Database 1931 – 2009, European Mathematical Society, {{Zbl|1059.74002}}, FIZ Karlsruhe & Springer-Verlag {{authority control}}{{DEFAULTSORT:Yu, Mao-Hong}}2. ^Fan, S. C., Qiang, H. F. (2001). Normal high-velocity impaction concrete slabs-a simulation using the meshless SPH procedures. Computational Mechanics-New Frontiers for New Millennium, Valliappan S. and Khalili N. eds. Elsevier Science Ltd, pp. 1457-1462 3. ^Zhang, C. Q., Zhou, H., Feng, X. T. (2008). Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC3D (in Chinese). Rock and Soil Mechanics, 29(3), pp. 596-601 4. ^Zhao, G.-H.; Ed., (2006) Handbook of Engineering Mechanics, Rock Mechanics, Engineering Structures and Materials (in Chinese), China's Water Conservancy Resources and Hydropower Press, Beijing, pp. 20-21 5. ^Altenbach, H., Bolchoun, A., Kolupaev, V.A. (2013). Phenomenological Yield and Failure Criteria, in Altenbach, H., Öchsner, A., eds., Plasticity of Pressure-Sensitive Materials, Serie ASM, Springer, Heidelberg, pp. 49-152. {{ISBN|978-3-642-40944-8}} 6. ^Kolupaev, V. A., Altenbach, H. (2010). Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu), Forschung im Ingenieurwesen, 74(3), pp. 135-166. {{doi|10.1007/s10010-010-0122-3}} 7. ^Kolupaev, V. A., Yu, M.-H., Altenbach, H. (2013). Yield Criteria of Hexagonal Symmetry in the π-plane, Acta Mechanica, 224(7), pp. 1527-1540. {{doi|10.1007/s00707-013-0830-5}} 8. ^Schmidt, R. (1932). Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ingenieur-Archiv, 3(3), pp. 215-235. 9. ^Ishlinsky, A. Yu. (1940). Hypothesis of Strength of Shape Change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika, 46, pp. 104-114. 10. ^Sdobyrev, V. P. (1959). Criterion for the long term strength of some heat-resistant alloys at a multiaxial loading (in Russ.: Kriterij dlitelnoj prochnosti dlja nekotorykh zharoprochnykh splavov pri slozhnom naprjazhennom sostojanii). Izvestija Akademii Nauk SSSR, Otdelenie tekhnicheskikh Nauk, Mechanika i Mashinostroenie, 6, pp. 93-99. 11. ^Pisarenko, G. S., Lebedev, A. A.. (1969). Deformation and Fracture of Materials under Combined Stress (in Russ.: Soprotivlenie materialov deformirovaniju i razrusheniju pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev. 12. ^Pisarenko, G. S., Lebedev, A. A.. (1976). Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost' materialov pri slozhnom nap\\-rjazhennom sostojanii). Naukowa Dumka, Kiev. 4 : Living people|1934 births|Chinese engineers|Zhejiang University alumni |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。