请输入您要查询的百科知识:

 

词条 Active fluid
释义

  1. Terminology

  2. Examples and observations

      Pattern formation    Active turbulence  

  3. Mechanism and modelling approaches

  4. Potential applications

  5. See also

  6. References

An active fluid is a densely packed soft material whose constituent elements can self-propel.[1][2][3][4] Examples include dense suspensions of bacteria, microtubule networks or artificial swimmers.[2] These materials come under the broad category of active matter and differ significantly in properties when compared to passive fluids[5], which can be described using Navier-Stokes equation. Even though systems describable as active fluids have been observed and investigated in different contexts for a long time, scientific interest in properties directly related to the activity has emerged only in the past two decades. These materials have been shown to exhibit a variety of different phases ranging from well ordered patterns to chaotic states (see below). Recent experimental investigations have suggested that the various dynamical phases exhibited by active fluids may have important technological applications.[6][7]

Terminology

The terms “active fluids”, “active nematics” and “active liquid crystals” have been used almost synonymously to denote hydrodynamic descriptions of dense active matter.[2][8][9][10] While in many respects they describe the same phenomenon, there are subtle differences between them. “Active nematics” and “active liquid crystals” refers to systems where the constituent elements have nematic order whereas “active fluids” is the more generic term combining systems with both nematic and polar interactions.

Examples and observations

There are wide range of cellular and intracellular elements which form active fluids. This include systems of microtubule, bacteria, sperm cells as well as inanimate microswimmers.[2] It is known that these systems form a variety of structures such as regular and irregular lattices as well as seemingly random states in two dimensions.

Pattern formation

Active fluids have been shown to organize into regular and irregular lattices in a variety of settings. These include irregular hexagonal lattices by microtubules[11] and regular vortex lattice by sperm cells[12]. From topological considerations, it can be seen that the constituent element in quasi stationary states of active fluids should necessarily be vortices. But very less is known, for instance, about the length scale selection in such systems.

Active turbulence

Chaotic states exhibited by active fluids are termed as active turbulence.[13] Such states are qualitatively similar to hydrodynamic turbulence, by virtue of which they are termed active turbulence. But recent research has indicated that the statistical properties associated with such flows are quite different from that of hydrodynamic turbulence.[5][14]

Mechanism and modelling approaches

The mechanism behind the formation of various structures in active fluids is an area of active research. It is well understood that the structure formation in active fluids is intimately related to defects or disclinations in the order parameter field[15][16] (the orientational order of the constituent agents). An important part of research on active fluids involve modelling of dynamics of these defects to study its role in pattern formation and turbulent dynamics in active fluids. Modified versions of Vicsek model are among earliest and continually used approach to model active fluids.[17] Such models have been shown to capture the various dynamical states exhibited by active fluids.[17] More refined approaches include derivation of continuum limit hydrodynamic equations for active fluids[18][19] and adaptation of liquid crystal theory by including the activity terms[13].

Potential applications

A few technological applications for active fluids have been proposed such as powering of molecular motors through active turbulence and patterned state.[7] Furthermore, given the innumerable applications liquid crystals find in various technologies, there have been proposals to augment them by using active liquid crystals.[20]

See also

  • Active matter
  • Vicsek model
  • Navier Stokes equations
  • Soft matter

References

1. ^{{Cite journal|last=Morozov|first=Alexander|date=2017-03-24|title=From chaos to order in active fluids|url=http://science.sciencemag.org/content/355/6331/1262|journal=Science|language=en|volume=355|issue=6331|pages=1262–1263|doi=10.1126/science.aam8998|issn=0036-8075|pmid=28336624|bibcode=2017Sci...355.1262M}}
2. ^{{Cite journal|last=Saintillan|first=David|title=Rheology of Active Fluids|journal=Annual Review of Fluid Mechanics|volume=50|issue=1|pages=563–592|doi=10.1146/annurev-fluid-010816-060049|year=2018|bibcode=2018AnRFM..50..563S}}
3. ^{{Cite journal|last=Marchetti|first=M. C.|last2=Joanny|first2=J. F.|last3=Ramaswamy|first3=S.|last4=Liverpool|first4=T. B.|last5=Prost|first5=J.|last6=Rao|first6=Madan|last7=Simha|first7=R. Aditi|date=2013-07-19|title=Hydrodynamics of soft active matter|journal=Reviews of Modern Physics|volume=85|issue=3|pages=1143–1189|doi=10.1103/RevModPhys.85.1143|bibcode=2013RvMP...85.1143M}}
4. ^{{Cite book|title=Rheology of complex fluids|last=|first=|date=2010|publisher=Springer|others=Deshpande, Abhijit, Y. (Abhijit Yeshwa), Murali Krishnan, J., Sunil Kumar, P. B.|isbn=9781441964946|location=New York|pages=193|oclc=676699967}}
5. ^{{Cite journal|last=Bratanov|first=Vasil|last2=Jenko|first2=Frank|last3=Frey|first3=Erwin|date=2015-12-08|title=New class of turbulence in active fluids|url=http://www.pnas.org/content/112/49/15048|journal=Proceedings of the National Academy of Sciences|language=en|volume=112|issue=49|pages=15048–15053|doi=10.1073/pnas.1509304112|issn=0027-8424|pmid=26598708|pmc=4679023|bibcode=2015PNAS..11215048B}}
6. ^{{Cite journal|last=Yeomans|first=Julia M.|date=November 2014|title=Playful topology|url=https://www.nature.com/articles/nmat4123?WT.feed_name=subjects_deformation-dynamics|journal=Nature Materials|language=En|volume=13|issue=11|pages=1004–1005|doi=10.1038/nmat4123|pmid=25342530|issn=1476-4660|via=|bibcode=2014NatMa..13.1004Y}}
7. ^{{Cite journal|last=Yeomans|first=Julia M.|date=2017-03-01|title=Nature's engines: active matter|journal=Europhysics News|language=en|volume=48|issue=2|pages=21–25|doi=10.1051/epn/2017204|issn=0531-7479|bibcode=2017ENews..48b..21Y}}
8. ^{{Cite journal|last=Bonelli|first=Francesco|last2=Gonnella|first2=Giuseppe|last3=Tiribocchi|first3=Adriano|last4=Marenduzzo|first4=Davide|date=2016-01-01|title=Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term|journal=The European Physical Journal E|language=en|volume=39|issue=1|pages=1|doi=10.1140/epje/i2016-16001-2|pmid=26769011|issn=1292-8941}}
9. ^{{Cite journal|last=Keber|first=Felix C.|last2=Loiseau|first2=Etienne|last3=Sanchez|first3=Tim|last4=DeCamp|first4=Stephen J.|last5=Giomi|first5=Luca|last6=Bowick|first6=Mark J.|last7=Marchetti|first7=M. Cristina|last8=Dogic|first8=Zvonimir|last9=Bausch|first9=Andreas R.|year=2014|title=Topology and dynamics of active nematic vesicles|url=http://science.sciencemag.org/content/345/6201/1135|journal=Science|language=en|volume=345|issue=6201|pages=1135–1139|doi=10.1126/science.1254784|issn=0036-8075|pmid=25190790|pmc=4401068|arxiv=1409.1836|bibcode=2014Sci...345.1135K}}
10. ^{{Cite journal|last=Marenduzzo|first=D.|last2=Orlandini|first2=E.|last3=Yeomans|first3=J. M.|date=2007-03-16|title=Hydrodynamics and Rheology of Active Liquid Crystals: A Numerical Investigation|journal=Physical Review Letters|volume=98|issue=11|pages=118102|doi=10.1103/PhysRevLett.98.118102|pmid=17501095|bibcode=2007PhRvL..98k8102M}}
11. ^{{Cite journal|last=Sumino|first=Yutaka|last2=Nagai|first2=Ken H.|last3=Shitaka|first3=Yuji|last4=Tanaka|first4=Dan|last5=Yoshikawa|first5=Kenichi|last6=Chaté|first6=Hugues|last7=Oiwa|first7=Kazuhiro|date=March 2012|title=Large-scale vortex lattice emerging from collectively moving microtubules|url=http://www.nature.com/articles/nature10874|journal=Nature|language=En|volume=483|issue=7390|pages=448–452|doi=10.1038/nature10874|pmid=22437613|issn=1476-4687|via=|bibcode=2012Natur.483..448S}}
12. ^{{Cite journal|last=Riedel|first=Ingmar H.|last2=Kruse|first2=Karsten|last3=Howard|first3=Jonathon|date=2005-07-08|title=A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells|url=http://science.sciencemag.org/content/309/5732/300|journal=Science|language=en|volume=309|issue=5732|pages=300–303|doi=10.1126/science.1110329|issn=0036-8075|pmid=16002619|bibcode=2005Sci...309..300R}}
13. ^{{Cite journal|last=Thampi|first=S. P.|last2=Yeomans|first2=J. M.|date=2016-07-01|title=Active turbulence in active nematics|journal=The European Physical Journal Special Topics|language=en|volume=225|issue=4|pages=651–662|doi=10.1140/epjst/e2015-50324-3|issn=1951-6355|arxiv=1605.00808|bibcode=2016EPJST.225..651T}}
14. ^{{Cite journal|last=James|first=Martin|last2=Wilczek|first2=Michael|date=2018-02-01|title=Vortex dynamics and Lagrangian statistics in a model for active turbulence|journal=The European Physical Journal E|language=en|volume=41|issue=2|pages=21|doi=10.1140/epje/i2018-11625-8|pmid=29435676|issn=1292-8941}}
15. ^{{Cite journal|last=Giomi|first=Luca|last2=Bowick|first2=Mark J.|last3=Mishra|first3=Prashant|last4=Sknepnek|first4=Rastko|last5=Marchetti|first5=M. Cristina|date=2014-11-28|title=Defect dynamics in active nematics|url=http://rsta.royalsocietypublishing.org/content/372/2029/20130365|journal=Phil. Trans. R. Soc. A|language=en|volume=372|issue=2029|pages=20130365|doi=10.1098/rsta.2013.0365|issn=1364-503X|pmid=25332389|pmc=4223672|arxiv=1403.5254|bibcode=2014RSPTA.37230365G}}
16. ^{{Cite journal|last=Elgeti|first=J.|last2=Cates|first2=M. E.|last3=Marenduzzo|first3=D.|date=2011-03-22|title=Defect hydrodynamics in 2D polar active fluids|journal=Soft Matter|language=en|volume=7|issue=7|pages=3177|doi=10.1039/c0sm01097a|issn=1744-6848|bibcode=2011SMat....7.3177E}}
17. ^{{Cite journal|last=Großmann|first=Robert|last2=Romanczuk|first2=Pawel|last3=Bär|first3=Markus|last4=Schimansky-Geier|first4=Lutz|date=2014-12-19|title=Vortex Arrays and Mesoscale Turbulence of Self-Propelled Particles|journal=Physical Review Letters|volume=113|issue=25|pages=258104|doi=10.1103/PhysRevLett.113.258104|pmid=25554911|arxiv=1404.7111|bibcode=2014PhRvL.113y8104G}}
18. ^{{Cite journal|last=Toner|first=John|last2=Tu|first2=Yuhai|date=1998-10-01|title=Flocks, herds, and schools: A quantitative theory of flocking|journal=Physical Review E|volume=58|issue=4|pages=4828–4858|doi=10.1103/PhysRevE.58.4828|arxiv=cond-mat/9804180|bibcode=1998PhRvE..58.4828T}}
19. ^{{Cite journal|last=Wensink|first=Henricus H.|last2=Dunkel|first2=Jörn|last3=Heidenreich|first3=Sebastian|last4=Drescher|first4=Knut|last5=Goldstein|first5=Raymond E.|last6=Löwen|first6=Hartmut|last7=Yeomans|first7=Julia M.|year=2012|title=Meso-scale turbulence in living fluids|url=http://www.pnas.org/content/109/36/14308|journal=Proceedings of the National Academy of Sciences|language=en|volume=109|issue=36|pages=14308–14313|doi=10.1073/pnas.1202032109|issn=0027-8424|pmid=22908244|pmc=3437854|arxiv=1208.4239|bibcode=2012PNAS..10914308W}}
20. ^{{Cite journal|last=Majumdar|first=Apala|last2=Cristina|first2=Marchetti M.|last3=Virga|first3=Epifanio G.|date=2014-11-28|title=Perspectives in active liquid crystals|url=http://rsta.royalsocietypublishing.org/content/372/2029/20130373|journal=Phil. Trans. R. Soc. A|language=en|volume=372|issue=2029|pages=20130373|doi=10.1098/rsta.2013.0373|issn=1364-503X|pmid=25332386|bibcode=2014RSPTA.37230373M|pmc=4223676}}

2 : Soft matter|Condensed matter physics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 8:35:46