请输入您要查询的百科知识:

 

词条 Vitamin C
释义

  1. Biology

     Significance  Deficiency 

  2. Uses

     Scurvy  Infection  Cancer  Cardiovascular disease  Brain function  Other diseases 

  3. Side effects

  4. Diet

     Recommended levels  Food labeling  Sources  Plant sources  Animal sources  Food preparation  Supplements  Food fortification  Food additives 

  5. Pharmacology

      Pharmacodynamics    Pharmacokinetics    Absorption    Transport   Excretion 

  6. Chemistry

  7. Testing for levels

  8. Biosynthesis

      Animal pathway    Plant pathways   Evolution 

  9. Industrial synthesis

  10. History

     Folk medicine  Scurvy at sea   Discovery   Large doses 

  11. Society and culture

  12. Pharmacopoeias

  13. Notes

  14. References

  15. External links

{{for|other uses|vitamin C (disambiguation)}}{{pp-move-indef}}{{good article}}{{Use mdy dates|date=January 2018}}{{Infobox drug
| Watchedfields=changed
| verifiedrevid=477315393
| IUPAC_name=L-threo-Hex-2-enono-1,4-lactone
or
(R)-3,4-Dihydroxy-5-((S)- 1,2-dihydroxyethyl)furan-2(5H)-one
| image=L-Ascorbic_acid.svg
| alt=Natta projection of structural formula for L-ascorbic acid
| width =
| image2=Ascorbic-acid-from-xtal-1997-3D-balls.png
| alt2=Ball-and-stick model of L-ascorbic acid
| width2 =
| Drugs.com={{drugs.com |monograph |ascorbic-acid}}
| MedlinePlus=a682583
| licence_EU=
| licence_US=
| pregnancy_AU=
| pregnancy_US=
| pregnancy_category=A (to RDA), C (above RDA)
| legal_status= OTC (when used by mouth); prescription (for injectable form)
| routes_of_administration = By mouth, IM, IV, subQ
| bioavailability=rapid & complete
| protein_bound=negligible
| elimination_half-life=varies according to plasma concentration
| excretion=kidney
| IUPHAR_ligand=4781
| CAS_number_Ref={{cascite |correct |??}}
| CAS_number=50-81-7
| ATC_prefix=A
| ATC_suffix=11G
| ChEBI_Ref={{ebicite |correct |EBI}}
| ChEBI=29073
| PubChem=54670067
| DrugBank_Ref={{drugbankcite |correct |drugbank}}
| DrugBank=DB00126
| ChemSpiderID_Ref={{chemspidercite |correct |chemspider}}
| ChemSpiderID=10189562
| NIAID_ChemDB=002072
| UNII_Ref={{fdacite |correct |FDA}}
| UNII=PQ6CK8PD0R
| KEGG_Ref={{keggcite |correct |kegg}}
| KEGG=D00018
| ChEMBL_Ref={{ebicite |correct |EBI}}
| ChEMBL=196
| chemical_formula =
| C=6 |H=8 |O=6
| molecular_weight=176.12
| SMILES=OC[C@H](O)[C@H]1OC(=O)C(O)=C1O
| StdInChI_Ref={{stdinchicite |correct |chemspider}}
| StdInChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5+/m0/s1
| StdInChIKey_Ref={{stdinchicite |correct |chemspider}}
| StdInChIKey=CIWBSHSKHKDKBQ-JLAZNSOCSA-N
| synonyms=L-ascorbic acid, ascorbic acid, ascorbate
| density=1.694
| melting_point=190–192
| melting_notes = (some decomposition)[1]
| boiling_point= 553
| boiling_notes= {{Citation needed|date=November 2018}}
}}Vitamin C, also known as ascorbic acid and L-ascorbic acid, is a vitamin found in various foods and sold as a dietary supplement.[2] It is used to prevent and treat scurvy.[2] Vitamin C is an essential nutrient involved in the repair of tissue and the enzymatic production of certain neurotransmitters.[2][5] It is required for the functioning of several enzymes and is important for immune system function.[5][2] It also functions as an antioxidant.[8]

Current evidence does not support its use for the prevention of the common cold.[3][4] There is, however, some evidence that regular use may shorten the length of colds.[5] It is unclear whether supplementation affects the risk of cancer, cardiovascular disease, or dementia.[6][7] It may be taken by mouth or by injection.[2]

Vitamin C is generally well tolerated.[2] Large doses may cause gastrointestinal discomfort, headache, trouble sleeping, and flushing of the skin.[2][4] Normal doses are safe during pregnancy.[8] The United States Institute of Medicine recommends against taking large doses.[9]

Vitamin C was discovered in 1912, isolated in 1928, and in 1933 was the first vitamin to be chemically produced.[20] It is on the World Health Organization Model List of Essential Medicines, which lists the most effective and safe medicines needed in a health system.[10] Vitamin C is available as an inexpensive generic and over-the-counter medication.[2][11][12] Partly for its discovery, Albert Szent-Györgyi and Walter Norman Haworth were awarded the 1937 Nobel Prizes in Physiology and Medicine and Chemistry, respectively.[13][14] Foods containing vitamin C include citrus fruits, kiwifruit, broccoli, Brussels sprouts, raw bell peppers, and strawberries.[3] Prolonged storage or cooking may reduce vitamin C content in foods.[3]

{{TOC limit}}

Biology

Significance

Vitamin C is an essential nutrient for certain animals including humans. The term vitamin C encompasses several vitamers that have vitamin C activity in animals. Ascorbate salts such as sodium ascorbate and calcium ascorbate are used in some dietary supplements. These release ascorbate upon digestion. Ascorbate and ascorbic acid are both naturally present in the body, since the forms interconvert according to pH. Oxidized forms of the molecule such as dehydroascorbic acid are converted back to ascorbic acid by reducing agents.[9]

Vitamin C functions as a cofactor in many enzymatic reactions in animals (and humans) that mediate a variety of essential biological functions, including wound healing and collagen synthesis. In humans, vitamin C deficiency leads to impaired collagen synthesis, contributing to the more severe symptoms of scurvy.[9] Another biochemical role of vitamin C is to act as an antioxidant (a reducing agent) by donating electrons to various enzymatic and non-enzymatic reactions.[9] Doing so converts vitamin C to an oxidized state - either as semidehydroascorbic acid or dehydroascorbic acid. These compounds can be restored to a reduced state by glutathione and NADPH-dependent enzymatic mechanisms.[15][16][17]

In plants, vitamin C is a substrate for ascorbate peroxidase. This enzyme utilizes ascorbate to neutralize toxic hydrogen peroxide (H2O2) by converting it to water (H2O).[2][18]

Deficiency

{{Main|Scurvy}}Scurvy is a disease resulting from a deficiency of vitamin C, since without this vitamin, collagen made by the body is too unstable to perform its function.[2]

Scurvy leads to the formation of brown spots on the skin, spongy gums, and bleeding from all mucous membranes. The spots are most abundant on the thighs and legs, and a person with the ailment looks pale, feels depressed, and is partially immobilized. In advanced scurvy there are open, suppurating wounds and loss of teeth and, eventually, death. The human body can store only a certain amount of vitamin C,[38] and so the body stores are depleted if fresh supplies are not consumed. The time frame for onset of symptoms of scurvy in unstressed adults on a completely vitamin C free diet, however, may range from one month to more than six months, depending on previous loading of vitamin C.[39][40]

Notable human dietary studies of experimentally induced scurvy have been conducted on conscientious objectors during World War II in Britain and on Iowa state prisoners in the late 1960s to the 1980s. These studies both found that all obvious symptoms of scurvy previously induced by an experimental scorbutic diet with extremely low vitamin C content could be completely reversed by additional vitamin C supplementation of only 10 mg a day. In these experiments, there was no clinical difference noted between men given 70 mg vitamin C per day (which produced a blood level of vitamin C of about 0.55 mg/dl, about 1/3 of tissue saturation levels) and those given 10 mg per day. Men in the prison study developed the first signs of scurvy about four weeks after starting the vitamin C-free diet, whereas in the British study, six to eight months were required, possibly due to the pre-loading of this group with a 70 mg/day supplement for six weeks before the scorbutic diet was fed.[39][19]

Men in both studies on a diet devoid, or nearly devoid, of vitamin C had blood levels of vitamin C too low to be accurately measured when they developed signs of scurvy and, in the Iowa study, at this time were estimated (by labeled vitamin C dilution) to have a body pool of less than 300 mg, with daily turnover of only 2.5 mg/day, implying an instantaneous half-life of 83 days by this time (elimination constant of 4 months).[20]

Uses

Vitamin C has a definitive role in treating scurvy, which is a disease caused by vitamin C deficiency. Beyond that, a role for vitamin C as prevention or treatment for various diseases is disputed, with reviews reporting conflicting results. A 2012 Cochrane review reported no effect of vitamin C supplementation on overall mortality.[21] It is on the World Health Organization's List of Essential Medicines as one of the most effective and safe medicines needed in a health system.[10]

Scurvy

The disease scurvy is caused by vitamin C deficiency and can be prevented and treated with vitamin C-containing foods or dietary supplements.[22][9] It takes at least a month of little to no vitamin C before symptoms occur.[20] Early symptoms are malaise and lethargy, progressing to shortness of breath, bone pain, bleeding gums, susceptibility to bruising, poor wound healing, and finally fever, convulsions and eventual death.[22] Until quite late in the disease the damage is reversible, as healthy collagen replaces the defective collagen with vitamin C repletion. Treatment can be orally or by intramuscular or intravenous injection.[22] Scurvy was known to Hippocrates in the classical era. The disease was shown to be prevented by citrus fruit in an early controlled trial by a Royal Navy surgeon, James Lind, in 1747, and from 1796 lemon juice was issued to all Royal Navy crewmen.[51][52]

Infection

{{Further|Vitamin C and the common cold}}

The effect of vitamin C on the common cold has been extensively researched. The earliest publication of a controlled clinical trial appears to be from 1945.[23] Researchers continued to work on this question, but research interest and public interest spiked after Linus Pauling, two-time awardee of the Nobel Prize (Chemistry Prize, 1954, Peace Prize 1962), started publishing research on the topic and also published a book "Vitamin C and the Common Cold" in 1970.[24] A revised and expanded edition "Vitamin C, the Common Cold and the Flu" was published in 1976.[55]

A Cochrane Review published in 2013 with inclusion criteria limited to trials that called for at least 200 mg/day concluded that vitamin C taken on a regular basis was not effective in prevention of the common cold. Limiting inclusion to trials that called for at least 1000 mg/day made no difference. However, taking vitamin C on a regular basis did reduce average duration by 8% in adults and 14% in children, and also reduced severity of colds.[5] A subset of trials reported that supplementation reduced the incidence of colds by half in marathon runners, skiers, or soldiers in subarctic conditions.[5] Another subset of trials looked at therapeutic use, meaning that vitamin C was not started unless the people started to feel the beginnings of a cold. In these, vitamin C did not impact duration or severity.[5] An earlier review stated that vitamin C did not prevent colds, did reduce duration, did not reduce severity.[25] The authors of the Cochrane review concluded that "...given the consistent effect of vitamin C on the duration and severity of colds in the regular supplementation studies, and the low cost and safety, it may be worthwhile for common cold patients to test on an individual basis whether therapeutic vitamin C is beneficial for them."[5]

Vitamin C distributes readily in high concentrations into immune cells, has antimicrobial and natural killer cell activities, promotes lymphocyte proliferation, and is consumed quickly during infections, effects indicating a prominent role in immune system regulation.[26] The European Food Safety Authority found a cause and effect relationship exists between the dietary intake of vitamin C and functioning of a normal immune system in adults and in children under three years of age.[27][28]

Cancer

There are two approaches to the question of whether vitamin C has an impact on cancer. First, within the normal range of dietary intake without additional dietary supplementation, are people who consume more vitamin C at lower risk for developing cancer, and if so, does an orally consumed supplement have the same benefit? Second, for people diagnosed with cancer, will large amounts of ascorbic acid administered intravenously treat the cancer, reduce the adverse effects of other treatments, and so prolong survival and improve quality of life? A 2013 Cochrane review found no evidence that vitamin C supplementation reduces the risk of lung cancer in healthy people or those at high risk due to smoking or asbestos exposure.[29] A second meta-analysis found no effect on the risk of prostate cancer.[30] Two meta-analyses evaluated the effect of vitamin C supplementation on the risk of colorectal cancer. One found a weak association between vitamin C consumption and reduced risk, and the other found no effect from supplementation.[31][32] A 2011 meta-analysis failed to find support for the prevention of breast cancer with vitamin C supplementation,[33] but a second study concluded that vitamin C may be associated with increased survival in those already diagnosed.[34]

Under the rubric of orthomolecular medicine, "Intravenous vitamin C is a contentious adjunctive cancer therapy, widely used in naturopathic and integrative oncology settings." [35] With oral administration absorption efficiency decreases as amounts increase. Intravenous administration bypasses this.[36] Doing so makes it possible to achieve plasma concentrations of 5 to 10 millimoles/liter (mmol/L), which far exceed the approximately 0.2 mmol/L limit from oral consumption.[37] The theories of mechanism are contradictory. At high tissue concentrations ascorbic acid is described as acting as a pro-oxidant, generating hydrogen peroxide (H2O2) to kill tumor cells. The same literature claims that ascorbic acid acts as an antioxidant, thereby reducing the adverse effects of chemotherapy and radiation therapy.[35][36] Research continues in this field, but a 2014 review concluded: "Currently, the use of high-dose intravenous vitamin C [as an anticancer agent] cannot be recommended outside of a clinical trial."[38] A 2015 review added: "There is no high-quality evidence to suggest that ascorbate supplementation in cancer patients either enhances the antitumor effects of chemotherapy or reduces its toxicity. Evidence for ascorbate's anti-tumor effects was limited to case reports and observational and uncontrolled studies."[39]

Cardiovascular disease

A 2013 meta-analysis found no evidence that vitamin C supplementation reduces the risk of myocardial infarction, stroke, cardiovascular mortality, or all-cause mortality.[6] However, a second analysis found an inverse relationship between circulating vitamin C levels or dietary vitamin C and the risk of stroke.[40]

A meta-analysis of 44 clinical trials has shown a significant positive effect of vitamin C on endothelial function when taken at doses greater than 500 mg per day. The endothelium is a layer of cells that line the interior surface of blood vessels. Endothelial dysfunction is implicated in many aspects of vascular diseases. The researchers noted that the effect of vitamin C supplementation appeared to be dependent on health status, with stronger effects in those at higher risk of cardiovascular disease.[41]

Brain function

A 2017 systematic review found lower vitamin C concentrations in people with cognitive impairment, including Alzheimer's disease and dementia, compared to people with normal cognition.[42] The cognitive testing, however, relied on the Mini-Mental State Examination, which is only a general test of cognition, indicating an overall low quality of research assessing the potential importance of vitamin C on cognition in normal and impaired people.[42] A review of nutrient status in people with Alzheimer's disease reported low plasma vitamin C, but also low blood levels of folate, vitamin B12, and vitamin E.[43]

Other diseases

Studies examining the effects of vitamin C intake on the risk of Alzheimer's disease have reached conflicting conclusions.[44][45] Maintaining a healthy dietary intake is probably more important than supplementation for achieving any potential benefit.[46] A 2010 review found no role for vitamin C supplementation in the treatment of rheumatoid arthritis.[47] Vitamin C supplementation does not prevent or slow the progression of age-related cataract.[48]

Side effects

Vitamin C is a water-soluble vitamin,[49] with dietary excesses not absorbed, and excesses in the blood rapidly excreted in the urine, so it exhibits remarkably low acute toxicity.[2] More than two to three grams may cause indigestion, particularly when taken on an empty stomach. However, taking vitamin C in the form of sodium ascorbate and calcium ascorbate may minimize this effect.[50] Other symptoms reported for large doses include nausea, abdominal cramps and diarrhea. These effects are attributed to the osmotic effect of unabsorbed vitamin C passing through the intestine.[9] In theory, high vitamin C intake may cause excessive absorption of iron. A summary of reviews of supplementation in healthy subjects did not report this problem but left as untested the possibility that individuals with hereditary hemochromatosis might be adversely affected.[9]

There is a longstanding belief among the mainstream medical community that vitamin C increases risk of kidney stones.[51] "Reports of kidney stone formation associated with excess ascorbic acid intake are limited to individuals with renal disease".[9] Reviews state that "data from epidemiological studies do not support an association between excess ascorbic acid intake and kidney stone formation in apparently healthy individuals",[9][52] although one large, multi-year trial did report a nearly two-fold increase in kidney stones in men who regularly consumed a vitamin C supplement.[53]

Diet

Recommended levels

US vitamin C recommendations (mg per day)[9]
RDA (children ages 1–3 years)15
RDA (children ages 4–8 years)25
RDA (children ages 9–13 years)45
RDA (girls ages 14–18 years)65
RDA (boys ages 14–18 years)75
RDA (adult female)75
RDA (adult male)90
RDA (pregnancy)85
RDA (lactation)120
UL (adult female)2,000
UL (adult male)2,000

Recommendations for vitamin C intake by adults have been set by various national agencies:

  • 40 milligrams per day: India National Institute of Nutrition, Hyderabad[54]
  • 45 milligrams per day or 300 milligrams per week: the World Health Organization[55]
  • 80 milligrams per day: the European Commission Council on nutrition labeling[56]
  • 90 mg/day (males) and 75 mg/day (females): Health Canada 2007[57]
  • 90 mg/day (males) and 75 mg/day (females): United States National Academy of Sciences.[9]
  • 100 milligrams per day: Japan National Institute of Health and Nutrition.[58]
  • 110 mg/day (males) and 95 mg/day (females): European Food Safety Authority[59]

In 2000 the North American Dietary Reference Intake chapter on vitamin C updated the Recommended Dietary Allowance (RDA) to 90 milligrams per day for adult men and 75 mg/day for adult women, and set a Tolerable upper intake level (UL) for adults of 2,000 mg/day.[9] The table shows RDAs for the United States and Canada for children, and for pregnant and lactating women.[9] For the European Union, the EFSA set higher recommendations for adults, and also for children: 20 mg/day for ages 1–3, 30 mg/day for ages 4–6, 45 mg/day for ages 7–10, 70 mg/day for ages 11–14, 100 mg/day for males ages 15–17, 90 mg/day for females ages 15–17. For pregnancy 100 mg/day; for lactation 155 mg/day.[59] India, on the other hand, has set recommendations much lower: 40 mg/day for ages 1 through adult, 60 mg/day for pregnancy, and 80 mg/day for lactation.[54] Clearly, there is not consensus among countries.

Cigarette smokers and people exposed to secondhand smoke have lower plasma vitamin C levels than nonsmokers. The thinking is that inhalation of smoke causes oxidative damage, depleting this antioxidant vitamin.[9][58] The U.S. Institute of Medicine estimated that smokers need 35 mg more vitamin C per day than nonsmokers, but did not formally establish a higher RDA for smokers.[9] One meta-analysis showed an inverse relationship between vitamin C intake and lung cancer, although it concluded that more research is needed to confirm this observation.[60]

The U.S. National Center for Health Statistics conducts biannual National Health and Nutrition Examination Survey (NHANES) to assess the health and nutritional status of adults and children in the United States. Some results are reported as What We Eat In America. The 2013-2014 survey reported that for adults ages 20 years and older, men consumed on average 83.3 mg/d and women 75.1 mg/d. This means that half the women and more than half the men are not consuming the RDA for vitamin C.[61] The same survey stated that about 30% of adults reported they consumed a vitamin C dietary supplement or a multi-vitamin/mineral supplement that included vitamin C, and that for these people total consumption was between 300 and 400 mg/d.[62]

In 2000 the Institute of Medicine of the U.S. National Academy of Sciences set a Tolerable upper intake level (UL) for adults of 2,000 mg/day. The amount was chosen because human trials had reported diarrhea and other gastrointestinal disturbances at intakes of greater than 3,000 mg/day. This was the Lowest-Observed-Adverse-Effect Level (LOAEL), meaning that other adverse effects were observed at higher intakes.[9] The European Food Safety Authority (EFSA) reviewed the safety question in 2006 and reached the conclusion that there was not sufficient evidence to set a UL for vitamin C.[63] The Japan National Institute of Health and Nutrition reviewed the same question in 2010 and also reached the conclusion that there was not sufficient evidence to set a UL.[58]

Food labeling

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value (%DV). For vitamin C labeling purposes 100% of the Daily Value was 60 mg, but as of May 27, 2016 it was revised to 90 mg to bring it into agreement with the RDA.[64] A table of the old and new adult Daily Values is provided at Reference Daily Intake. The original deadline to be in compliance was July 28, 2018, but on September 29, 2017 the FDA released a proposed rule that extended the deadline to January 1, 2020 for large companies and January 1, 2021 for small companies.[65] European Union regulations require that labels declare energy, protein, fat, saturated fat, carbohydrates, sugars, and salt. Voluntary nutrients may be shown if present in significant amounts. Instead of Daily Values, amounts are shown as percent of Reference Intakes (RIs). For vitamin C, 100% RI was set at 80 mg in 2011.[66]

Sources

The richest natural sources are fruits and vegetables.[2] Vitamin C is the most widely taken nutritional supplement and is available in a variety of forms,[2] including tablets, drink mixes, and in capsules.

Plant sources

While plant foods are generally a good source of vitamin C, the amount in foods of plant origin depends on the variety of the plant, soil condition, climate where it grew, length of time since it was picked, storage conditions, and method of preparation.[67][68] The following table is approximate and shows the relative abundance in different raw plant sources.[69][70] As some plants were analyzed fresh while others were dried (thus, artificially increasing concentration of individual constituents like vitamin C), the data are subject to potential variation and difficulties for comparison. The amount is given in milligrams per 100 grams of the edible portion of the fruit or vegetable:

Plant source[71]Amount
(mg / 100g)
Kakadu plum 1000–5300[72]
Camu camu 2800[70][73]
Acerola 1677[74]
Seabuckthorn 695
Indian gooseberry 445
Rose hip 426
Guava 228
Blackcurrant 200
Yellow bell pepper/capsicum 183
Red bell pepper/capsicum 128
Kale 120
Kiwifruit, broccoli 90
Plant source[71]Amount
(mg / 100g)
Green bell pepper/capsicum 80
Loganberry, redcurrant, Brussels sprouts 80
Cloudberry, elderberry 60
Papaya, strawberry 60
Orange, lemon 53
Pineapple, cauliflower 48
Cantaloupe 40
Grapefruit, raspberry 30
Passion fruit, spinach 30
Cabbage, lime 30
Mango 28
Blackberry 21
Plant source[71]Amount
(mg / 100g)
Potato, honeydew melon 20
Tomato 14
Cranberry 13
Blueberry, grape 10
Apricot, plum, watermelon 10
Avocado 8.8
Onion 7.4
Cherry, peach 7
Carrot, apple, asparagus 6

{{Clear}}

Animal sources

Animal-sourced foods do not provide much vitamin C, and what there is, is largely destroyed by the heat of cooking. For example, raw chicken liver contains 17.9 mg/100 g, but fried, the content is reduced to 2.7 mg/100 g. Chicken eggs contain no vitamin C, raw or cooked.[76] Vitamin C is present in human breast milk at 5.0 mg/100 g and 6.1 mg/100 g in one tested sample of infant formula, but cow's milk contains only 1.0 mg/ 100 g.[77]

Food preparation

Vitamin C chemically decomposes under certain conditions, many of which may occur during the cooking of food. Vitamin C concentrations in various food substances decrease with time in proportion to the temperature at which they are stored[78] and cooking can reduce the vitamin C content of vegetables by around 60% possibly partly due to increased enzymatic destruction as it may be more significant at sub-boiling temperatures.[79] Longer cooking times also add to this effect, as will copper food vessels, which catalyse the decomposition.[80]

Another cause of vitamin C being lost from food is leaching, where the water-soluble vitamin dissolves into the cooking water, which is later poured away and not consumed. However, vitamin C does not leach in all vegetables at the same rate; research shows broccoli seems to retain more than any other.[81] Research has also shown that freshly cut fruits do not lose significant nutrients when stored in the refrigerator for a few days.[82]

Supplements

Vitamin C dietary supplements are available as tablets, capsules, drink mix packets, in multi-vitamin/mineral formulations, in antioxidant formulations, and as crystalline powder.[22] Vitamin C is also added to some fruit juices and juice drinks. Tablet and capsule content ranges from 25 mg to 1500 mg per serving. The most commonly used supplement compounds are ascorbic acid, sodium ascorbate and calcium ascorbate.[22] Vitamin C molecules can also be bound to the fatty acid palmitate, creating ascorbyl palmitate, or else incorporated into liposomes.[83]

Food fortification

In 2014, the Canadian Food Inspection Agency evaluated the effect of fortification of foods with ascorbate in the guidance document, Foods to Which Vitamins, Mineral Nutrients and Amino Acids May or Must be Added.[84] Voluntary and mandatory fortification was described for various classes of foods. Among foods classified for mandatory fortification with vitamin C were fruit-flavored drinks, mixes, and concentrates, foods for a low-energy diet, meal replacement products, and evaporated milk.[84]

Food additives

Ascorbic acid and some of its salts and esters are common additives added to various foods, mostly to retard oxidation. The relevant European food additive E numbers are:

  1. E300 ascorbic acid (approved for use as a food additive in the EU,&91;85&93; U.S.&91;86&93; and Australia and New Zealand)&91;87&93;
  2. E301 sodium ascorbate (approved for use as a food additive in the EU,&91;85&93; U.S.&91;88&93; and Australia and New Zealand)&91;87&93;
  3. E302 calcium ascorbate (approved for use as a food additive in the EU,&91;85&93; U.S.&91;86&93; and Australia and New Zealand)&91;87&93;
  4. E303 potassium ascorbate (approved in Australia and New Zealand,&91;87&93; but not in U.S.)
  5. E304 fatty acid esters of ascorbic acid such as ascorbyl palmitate (approved for use as a food additive in the EU,&91;85&93; U.S.&91;86&93; and Australia and New Zealand)&91;87&93;

Pharmacology

{{also|Chemistry of ascorbic acid}}

Pharmacodynamics

{{Expand section|the content specified on the talk page|small=no|talksection=Talk:Vitamin C#Pharmacodynamics|date=December 2018}}

Vitamin C – specifically, in the form of ascorbate – performs numerous physiological functions in the human body by serving as an enzyme substrate and/or cofactor and an electron donor. These functions include the synthesis of collagen, carnitine, and neurotransmitters; the synthesis and catabolism of tyrosine; and the metabolism of microsome.[17] During biosynthesis, ascorbate acts as a reducing agent, donating electrons and preventing oxidation to keep iron and copper atoms in their reduced states.

Vitamin C functions as a cofactor for the following enzymes:

  • Three groups of enzymes (prolyl-3-hydroxylases, prolyl-4-hydroxylases, and lysyl hydroxylases) that are required for the hydroxylation of proline and lysine in the synthesis of collagen.[89][90][91] These reactions add hydroxyl groups to the amino acids proline or lysine in the collagen molecule via prolyl hydroxylase and lysyl hydroxylase, both requiring vitamin C as a cofactor. The role of vitamin C as a cofactor is to oxidize prolyl hydroxylase and lysyl hydroxylase from Fe{{sup|2+}} to Fe{{sup|3+}} and to reduce it from Fe{{sup|3+}} to Fe{{sup|2+}}. Hydroxylation allows the collagen molecule to assume its triple helix structure, and thus vitamin C is essential to the development and maintenance of scar tissue, blood vessels, and cartilage.[49]
  • Two enzymes (ε-N-trimethyl-L-lysine hydroxylase and γ-butyrobetaine hydroxylase) that are necessary for synthesis of carnitine.[166] Carnitine is essential for the transport of fatty acids into mitochondria for ATP generation.
  • Hypoxia-inducible factor-proline dioxygenase enzymes (isoforms: EGLN1, EGLN2, and EGLN3)[92][93]
  • Dopamine beta-hydroxylase participates in the biosynthesis of norepinephrine from dopamine.[94][95]
  • Peptidylglycine alpha-amidating monooxygenase amidates peptide hormones by removing the glyoxylate residue from their c-terminal glycine residues. This increases peptide hormone stability and activity.[96][97]

Pharmacokinetics

Absorption

From the U.S. National Institutes of Health: [In humans] "Approximately 70%–90% of vitamin C is absorbed at moderate intakes of 30–180 mg/day. However, at doses above 1,000 mg/day, absorption falls to less than 50%."[3] It is transported through the intestine via both glucose-sensitive and glucose-insensitive mechanisms, so the presence of large quantities of sugar in the intestine can slow absorption.[98]

Ascorbic acid is absorbed in the body by both active transport and simple diffusion. Sodium-Dependent Active Transport—Sodium-Ascorbate Co-Transporters (SVCTs) and Hexose transporters (GLUTs)—are the two transporter proteins required for active absorption. SVCT1 and SVCT2 import the reduced form of ascorbate across plasma membranes.[99] GLUT1 and GLUT3 are glucose transporters, and transfer only the dehydroascorbic acid (DHA) form of vitamin C.[100] Although dehydroascorbic acid is absorbed in higher rate than ascorbate, the amount of dehydroascorbic acid found in plasma and tissues under normal conditions is low, as cells rapidly reduce dehydroascorbic acid to ascorbate.[101]

Transport

SVCTs appear to be the predominant system for vitamin C transport in the body,[99] the notable exception being red blood cells, which lose SVCT proteins during maturation.[102] In both vitamin C synthesizers (example: rat) and non-synthesizers (example: human) cells with few exceptions maintain ascorbic acid concentrations much higher than the approximately 50 micromoles/liter (µmol/L) found in plasma. For example, the ascorbic acid content of pituitary and adrenal glands can exceed 2,000 µmol/L, and muscle is at 200-300 µmol/L.[103] The known coenzymatic functions of ascorbic acid do not require such high concentrations, so there may be other, as yet unknown functions. Consequences of all this organ content is that plasma vitamin C is not a good indicator of whole-body status, and people may vary in the amount of time needed to show symptoms of deficiency when consuming a diet very low in vitamin C.[103]

Excretion

Excretion can be as ascorbic acid, via urine. In humans, during times of low dietary intake, vitamin C is reabsorbed by the kidneys rather than excreted. Only when plasma concentrations are 1.4 mg/dL or higher does re-absorption decline and the excess amounts pass freely into the urine. This salvage process delays onset of deficiency.[104] Ascorbic acid also converts (reversibly) to dehydroascorbate (DHA) and from that compound non-reversibly to 2,3-diketogluonate and then oxalate. These three compounds are also excreted via urine. Humans are better than guinea pigs at converting DHA back to ascorbate, and thus take much longer to become vitamin C deficient.[183]

Chemistry

{{Multiple image |direction=vertical |align=right |image1=Ascorbic acid structure.png |image2=Dehydroascorbic acid.png |width=150 |caption1=ascorbic acid
(reduced form) |caption2=dehydroascorbic acid
(oxidized form)}}{{anchor |Enantiomeric notation of vitamin C vitamers and their biological significance}}{{Further|Ascorbic acid (molecular aspects)}}

The name "vitamin C" always refers to the L-enantiomer of ascorbic acid and its oxidized forms, such as dehydroascorbate (DHA). Therefore, unless written otherwise, "ascorbate" and "ascorbic acid" refer in the nutritional literature to L-ascorbate and L-ascorbic acid respectively. Ascorbic acid is a weak sugar acid structurally related to glucose. In biological systems, ascorbic acid can be found only at low pH, but in solutions above pH 5 is predominantly found in the ionized form, ascorbate. All of these molecules have vitamin C activity and thus are used synonymously with vitamin C, unless otherwise specified.

Numerous analytical methods have been developed for ascorbic acid detection. For example, vitamin C content of a food sample such as fruit juice can be calculated by measuring the volume of the sample required to decolorize a solution of dichlorophenolindophenol (DCPIP) and then calibrating the results by comparison with a known concentration of vitamin C.[105][106]

Testing for levels

Simple tests are available to measure the levels of vitamin C in the urine and in serum or blood plasma. However these reflect recent dietary intake rather than total body content.[9] It has been observed that while serum or blood plasma concentrations follow a circadian rhythm or reflect short-term dietary impact, content within tissues is more stable and can give a better view of the availability of ascorbate within the entire organism. However, very few hospital laboratories are adequately equipped and trained to carry out such detailed analyses.[107][108]

Biosynthesis

The vast majority of animals and plants are able to synthesize vitamin C, through a sequence of enzyme-driven steps, which convert monosaccharides to vitamin C. Yeasts do not make L-ascorbic acid but rather its stereoisomer, erythorbic acid[109]

In plants, this is accomplished through the conversion of mannose or galactose to ascorbic acid.[110][111]

In animals, the starting material is glucose. In some species that synthesize ascorbate in the liver (including mammals and perching birds), the glucose is extracted from glycogen; ascorbate synthesis is a glycogenolysis-dependent process.[112] In animals that cannot synthesize vitamin C, the enzyme L-gulonolactone oxidase (GULO), that catalyses the last step in the biosynthesis, is highly mutated and non-functional.[113][114][115][116]

Animal pathway

The biosynthesis of ascorbic acid in vertebrates starts with the formation of UDP-glucuronic acid. UDP-glucuronic acid is formed when UDP-glucose undergoes two oxidations catalyzed by the enzyme UDP-glucose 6-dehydrogenase. UDP-glucose 6-dehydrogenase uses the co-factor NAD+ as the electron acceptor. The transferase UDP-glucuronate pyrophosphorylase removes a UMP and glucuronokinase, with the cofactor ADP, removes the final phosphate leading to D-glucuronic acid. The aldehyde group of this compound is reduced to a primary alcohol using the enzyme glucuronate reductase and the cofactor NADPH, yielding L-gulonic acid. This is followed by lactone formation with the hydrolase gluconolactonase between the carbonyl on C1 and hydroxyl group on C4. L-Gulonolactone then reacts with oxygen, catalyzed by the enzyme L-gulonolactone oxidase (which is nonfunctional in humans and other Haplorrhini primates) and the cofactor FAD+. This reaction produces 2-oxogulonolactone (2-keto-gulonolactone), which spontaneously undergoes enolization to form ascorbic acid.[117][118]

[119]

Some mammals have lost the ability to synthesize vitamin C, including simians and tarsiers, which together make up one of two major primate suborders, Haplorrhini. This group includes humans. The other more primitive primates (Strepsirrhini) have the ability to make vitamin C. Synthesis does not occur in most bats[113] nor in species in the rodent family Caviidae, that includes guinea pigs and capybaras, but does occur in other rodents, including rats and mice.[120]

Reptiles and older orders of birds make ascorbic acid in their kidneys. Recent orders of birds and most mammals make ascorbic acid in their liver.[111] A number of species of passerine birds also do not synthesize, but not all of them, and those that do not are not clearly related; there is a theory that the ability was lost separately a number of times in birds.[121] In particular, the ability to synthesize vitamin C is presumed to have been lost and then later re-acquired in at least two cases.[122] The ability to synthesize vitamin C has also been lost in about 96% of fish (the teleosts).[121]

Most tested families of bats (order Chiroptera), including major insect and fruit-eating bat families, cannot synthesize vitamin C. A trace of gulonolactone oxidase was detected in only 1 of 34 bat species tested, across the range of 6 families of bats tested.[123] There are at least two species of bats, frugivorous bat (Rousettus leschenaultii) and insectivorous bat (Hipposideros armiger), that retain (or regained) their ability of vitamin C production.[124][125]

Some of these species (including humans) are able to make do with the lower levels available from their diets by recycling oxidised vitamin C.[126]

Most simians consume the vitamin in amounts 10 to 20 times higher than that recommended by governments for humans.[127] This discrepancy constitutes much of the basis of the controversy on current recommended dietary allowances. It is countered by arguments that humans are very good at conserving dietary vitamin C, and are able to maintain blood levels of vitamin C comparable with simians on a far smaller dietary intake, perhaps by recycling oxidized vitamin C.[126]

Plant pathways

There are many different biosynthesis pathways for ascorbic acid in plants. Most of these pathways are derived from products found in glycolysis and other pathways. For example, one pathway goes through the plant cell wall polymers.[113] The plant ascorbic acid biosynthesis pathway most principal seems to be L-galactose. L-Galactose reacts with the enzyme L-galactose dehydrogenase, whereby the lactone ring opens and forms again but with between the carbonyl on C1 and hydroxyl group on the C4, resulting in L-galactonolactone.[118] L-Galactonolactone then reacts with the mitochondrial flavoenzyme L-galactonolactone dehydrogenase.[128] to produce ascorbic acid.[118] L-Ascorbic acid has a negative feedback on L-galactose dehydrogenase in spinach.[129]

Ascorbic acid efflux by embryo of dicots plants is a well-established mechanism of iron reduction, and a step obligatory for iron uptake.[130]

All plants synthesize ascorbic acid. Ascorbic acid functions as a cofactor for enzymes involved in photosynthesis, synthesis of plant hormones, as an antioxidant and also regenerator of other antioxidants.[131] Plants use multiple pathways to synthesize vitamin C. The major pathway starts with glucose, fructose or mannose (all simple sugars) and proceeds to L-galactose, L-galactonolactone and ascorbic acid.[131][220] There is feedback regulation in place, in that the presence of ascorbic acid inhibits enzymes in the synthesis pathway.[132] This process follows a diurnal rhythm, so that enzyme expression peaks in the morning to support biosynthesis later on when mid-day sunlight intensity demands high ascorbic acid concentrations.[133] Minor pathways may be specific to certain parts of plants; these can be either identical to the vertebrate pathway (including the GLO enzyme), or start with inositol and get to ascorbic acid via L-galactonic acid to L-galactonolactone.[131]

Evolution

Ascorbic acid is a common enzymatic cofactor in mammals used in the synthesis of collagen, as well as a powerful reducing agent capable of rapidly scavenging a number of reactive oxygen species (ROS). Given that ascorbate has these important functions, it is surprising that the ability to synthesize this molecule has not always been conserved. In fact, anthropoid primates, Cavia porcellus (guinea pigs), teleost fishes, most bats, and some Passeriform birds have all independently lost the ability to internally synthesize Vitamin C in either the kidney or the liver.[134] [135] In all of the cases where genomic analysis was done on an ascorbic acid auxotroph, the origin of the change was found to be a result of loss-of-function mutations in the gene that codes for L-Gulono-γ-lactone oxidase, the enzyme that catalyzes the last step of the ascorbic acid pathway outlined above.[136] One explanation for the repeated loss of the ability to synthesize vitamin C is that it was the result of genetic drift; assuming that the diet was rich in vitamin C, natural selection would not act to preserve it.[137][138]

In the case of the simians, it is thought that the loss of the ability to make vitamin C may have occurred much farther back in evolutionary history than the emergence of humans or even apes, since it evidently occurred soon after the appearance of the first primates, yet sometime after the split of early primates into the two major suborders Haplorrhini (which cannot make vitamin C) and its sister suborder of non-tarsier prosimians, the Strepsirrhini ("wet-nosed" primates), which retained the ability to make vitamin C.[139] According to molecular clock dating, these two suborder primate branches parted ways about 63 to 60 million years ago.[140] Approximately three to five million years later (58 million years ago), only a short time afterward from an evolutionary perspective, the infraorder Tarsiiformes, whose only remaining family is that of the tarsier (Tarsiidae), branched off from the other haplorrhines.[141][142] Since tarsiers also cannot make vitamin C, this implies the mutation had already occurred, and thus must have occurred between these two marker points (63 to 58 million years ago).[143]

It has also been noted that the loss of the ability to synthesize ascorbate strikingly parallels the inability to break down uric acid, also a characteristic of primates. Uric acid and ascorbate are both strong reducing agents. This has led to the suggestion that, in higher primates, uric acid has taken over some of the functions of ascorbate.[144]

Industrial synthesis

Vitamin C is produced from glucose by two main routes. The Reichstein process, developed in the 1930s, uses a single pre-fermentation followed by a purely chemical route. The modern two-step fermentation process, originally developed in China in the 1960s, uses additional fermentation to replace part of the later chemical stages. The Reichstein process and the modern two-step fermentation processes use sorbitol as the starting material and convert it to sorbose using fermentation. The modern two-step fermentation process then converts sorbose to KGA through another fermentation step, avoiding an extra intermediate.

Both processes yield approximately 60% vitamin C from the glucose feed.[145]

World production of synthesized vitamin C was estimated at approximately 110,000 tonnes annually in 2000. Traditionally, the main producers were BASF/Takeda, DSM, Merck and the China Pharmaceutical Group Ltd. of the People's Republic of China. By 2008 only the DSM plant in Scotland remained operational outside of China because of the strong price competition from China.[146]

The world price of vitamin C rose sharply in 2008 partly as a result of rises in basic food prices but also in anticipation of a stoppage of the two Chinese plants, situated at Shijiazhuang near Beijing, as part of a general shutdown of polluting industry in China over the period of the Olympic games.[147] Production resumed after the Olympics, but then five Chinese manufacturers met in 2010, among them Northeast Pharmaceutical Group and North China Pharmaceutical Group, and agreed to temporarily stop production in order to maintain prices.[148] In 2011 an American suit was filed against four Chinese companies that allegedly colluded to limit production and fix prices of vitamin C in the United States. The companies did not deny the accusation but say in their defense that the Chinese government compelled them to act in this way.[149] In January 2012 a United States judge ruled that the Chinese companies can be sued in the U.S. by buyers acting as a group.[150] A verdict was reached in March 2013 imposing a $147.8 million fine. This verdict was reversed by the 2nd U.S. Circuit Court of Appeals in New York, on the grounds that China formally advised the Court that its laws required the vitamin C makers to violate the Sherman Act, a U.S. antitrust law.[151] In June 2017 the U.S. Supreme Court announced that it would consider an appeal filed to reverse the lower court decision.[152]

History

Folk medicine

The need to include fresh plant food or raw animal flesh in the diet to prevent disease was known from ancient times. Native people living in marginal areas incorporated this into their medicinal lore. For example, spruce needles were used in temperate zones in infusions, or the leaves from species of drought-resistant trees in desert areas. In 1536, the French explorers Jacques Cartier and Daniel Knezevic, exploring the St. Lawrence River, used the local natives' knowledge to save his men who were dying of scurvy. He boiled the needles of the arbor vitae tree to make a tea that was later shown to contain 50 mg of vitamin C per 100 grams.[153][154]

Scurvy at sea

In the 1497 expedition of Vasco da Gama, the curative effects of citrus fruit were known.[155][156] The Portuguese planted fruit trees and vegetables in Saint Helena, a stopping point for homebound voyages from Asia, and left their sick to be taken home by the next ship.[157]

Authorities occasionally recommended plant food to prevent scurvy during long sea voyages. John Woodall, the first surgeon to the British East India Company, recommended the preventive and curative use of lemon juice in his 1617 book, The Surgeon's Mate.[158] In 1734, the Dutch writer Johann Bachstrom gave the firm opinion that "scurvy is solely owing to a total abstinence from fresh vegetable food, and greens."[159][160]

Scurvy had long been a principal killer of sailors during the long sea voyages.[161] According to Jonathan Lamb, "In 1499, Vasco da Gama lost 116 of his crew of 170; In 1520, Magellan lost 208 out of 230;...all mainly to scurvy."[162]

The first attempt to give scientific basis for the cause of this disease was by a ship's surgeon in the Royal Navy, James Lind. While at sea in May 1747, Lind provided some crew members with two oranges and one lemon per day, in addition to normal rations, while others continued on cider, vinegar, sulfuric acid or seawater, along with their normal rations, in one of the world's first controlled experiments.[163] The results showed that citrus fruits prevented the disease. Lind published his work in 1753 in his Treatise on the Scurvy.[164][165]

Fresh fruit was expensive to keep on board, whereas boiling it down to juice allowed easy storage but destroyed the vitamin (especially if boiled in copper kettles).[80] It was 1796 before the British navy adopted lemon juice as standard issue at sea. In 1845, ships in the West Indies were provided with lime juice instead, and in 1860 lime juice was used throughout the Royal Navy, giving rise to the American use of the nickname "limey" for the British.[163] Captain James Cook had previously demonstrated the advantages of carrying "Sour krout" on board, by taking his crews to the Hawaiian Islands without losing any of his men to scurvy.[166] For this, the British Admiralty awarded him a medal.

The name antiscorbutic was used in the eighteenth and nineteenth centuries for foods known to prevent scurvy. These foods included lemons, limes, oranges, sauerkraut, cabbage, malt, and portable soup.[167] In 1928, the Canadian Arctic anthropologist Vilhjalmur Stefansson showed that the Inuit avoid scurvy on a diet of largely raw meat. Later studies on traditional food diets of the Yukon First Nations, Dene, Inuit, and Métis of Northern Canada showed that their daily intake of vitamin C averaged between 52 and 62 mg/day,[168] comparable with the Estimated Average Requirement.[9]

Discovery

Vitamin C was discovered in 1912, isolated in 1928 and synthesized in 1933, making it the first vitamin to be synthesized.[170] Shortly thereafter Tadeus Reichstein succeeded in synthesizing the vitamin in bulk by what is now called the Reichstein process.[171] This made possible the inexpensive mass-production of vitamin C. In 1934 Hoffmann–La Roche trademarked synthetic vitamin C under the brand name Redoxon[172] and began to market it as a dietary supplement.{{efn|"In 1934, Hoffman-La Roche, which bought the Reichstein process patent, became the first pharmaceutical company to mass produce and market synthetic vitamin C, under the brand name Redoxon."[173]}}

In 1907 a laboratory animal model which would help to identify the antiscorbutic factor was discovered by the Norwegian physicians Axel Holst and Theodor Frølich, who when studying shipboard beriberi, fed guinea pigs their test diet of grains and flour and were surprised when scurvy resulted instead of beriberi. By luck, this species did not make its own vitamin C, whereas mice and rats do.[174] In 1912, the Polish biochemist Casimir Funk developed the concept of vitamins. One of these was thought to be the anti-scorbutic factor. In 1928, this was referred to as "water-soluble C," although its chemical structure had not been determined.[175]

From 1928 to 1932, Albert Szent-Györgyi and Joseph L. Svirbely's Hungarian team, and Charles Glen King's American team, identified the anti-scorbutic factor. Szent-Györgyi isolated hexuronic acid from animal adrenal glands, and suspected it to be the antiscorbutic factor.[176] In late 1931, Szent-Györgyi gave Svirbely the last of his adrenal-derived hexuronic acid with the suggestion that it might be the anti-scorbutic factor. By the spring of 1932, King's laboratory had proven this, but published the result without giving Szent-Györgyi credit for it. This led to a bitter dispute over priority.[176] In 1933, Walter Norman Haworth chemically identified the vitamin as L-hexuronic acid, proving this by synthesis in 1933.[177][178][179][180] Haworth and Szent-Györgyi proposed that L-hexuronic acid be named a-scorbic acid, and chemically L-ascorbic acid, in honor of its activity against scurvy.[181][170] The term's etymology is from Latin, "a-" meaning away, or off from, while -scorbic is from Medieval Latin scorbuticus (pertaining to scurvy), cognate with Old Norse skyrbjugr, French scorbut, Dutch scheurbuik and Low German scharbock.[182] Partly for this discovery, Szent-Györgyi was awarded the 1937 Nobel Prize in Medicine,[183] and Haworth shared that year's Nobel Prize in Chemistry.[14]

In 1957, J.J. Burns showed that some mammals are susceptible to scurvy as their liver does not produce the enzyme L-gulonolactone oxidase, the last of the chain of four enzymes that synthesize vitamin C.[184][185] American biochemist Irwin Stone was the first to exploit vitamin C for its food preservative properties. He later developed the theory that humans possess a mutated form of the L-gulonolactone oxidase coding gene.[186]

In 2008, researchers at the University of Montpellier discovered that in humans and other primates the red blood cells have evolved a mechanism to more efficiently utilize the vitamin C present in the body by recycling oxidized L-dehydroascorbic acid (DHA) back into ascorbic acid for reuse by the body. The mechanism was not found to be present in mammals that synthesize their own vitamin C.[126]

Large doses

{{Further|Vitamin C megadosage}}

Vitamin C megadosage is a term describing the consumption or injection of vitamin C in doses comparable to or higher than the amounts produced by the livers of mammals which are able to synthesize vitamin C. The theory behind this, although not the actual term, was described in 1970 in an article by Linus Pauling. Briefly, his position was that for optimal health, humans should be consuming at least 2,300 mg/day to compensate for the inability to synthesize vitamin C. The recommendation also fell into the consumption range for gorillas - a non-synthesizing near-relative to humans.[187] A second argument for high intake is that serum ascorbic acid concentrations increase as intake increases until it plateaus at about 190 to 200 micromoles per liter (µmol/L) once consumption exceeds 1,250 milligrams.[188] As noted, government recommendations are a range of 40 to 110 mg/day and normal plasma is approximately 50 µmol/L, so 'normal' is about 25% of what can be achieved when oral consumption is in the proposed megadose range.

Pauling popularized the concept of high dose vitamin C as prevention and treatment of the common cold in 1970. A few years later he proposed that vitamin C would prevent cardiovascular disease, and that 10 grams/day, initially (10 days) administered intravenously and thereafter orally, would cure late-stage cancer.[189] Mega-dosing with ascorbic acid has other champions, among them chemist Irwin Stone and the controversial Matthias Rath and Patrick Holford, who both have been accused of making unsubstantiated treatment claims for treating cancer and HIV infection.

The mega-dosing theory is to a large degree discredited. Modest benefits are demonstrated for the common cold. Benefits are not superior when supplement intakes of more than 1,000 mg/day are compared to intakes between 200 and 1,000 mg/day, and so not limited to the mega-dose range.[190][191] The theory that large amounts of intravenous ascorbic acid can be used to treat late-stage cancer is - some forty years after Pauling's seminal paper - still considered unproven and still in need of high quality research.[38][39] However, a lack of conclusive evidence has not stopped individual physicians from prescribing intravenous ascorbic acid to thousands of people with cancer.[39]

Society and culture

In February 2011, the Swiss Post issued a postage stamp bearing a depiction of a model of a molecule of vitamin C to mark the International Year of Chemistry.[192]

Pharmacopoeias

  • British Pharmacopoeia[193]
  • Japanese Pharmacopoeia [194]

Notes

{{Notelist}}

References

1. ^Merck Index, 14th ed.
2. ^{{cite web |title=Vitamin C |url=http://lpi.oregonstate.edu/mic/vitamins/vitamin-C |publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR |access-date=March 22, 2017 |date=January 14, 2014}}
3. ^{{cite web |title=Fact Sheet for Health Professionals – Vitamin C |url=https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ |publisher=Office of Dietary Supplements, US National Institutes of Health |date=February 11, 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20170730052126/https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ |archivedate=July 30, 2017 |df=mdy-all}}
4. ^{{cite book|title=WHO Model Formulary 2008|date=2009|publisher=World Health Organization|isbn=9789241547659|page=496|url=http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|access-date=December 8, 2016|deadurl=no|archiveurl=https://web.archive.org/web/20161213060118/http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf|archivedate=December 13, 2016|df=mdy-all}}
5. ^{{cite journal | vauthors = Hemilä H, Chalker E | title = Vitamin C for preventing and treating the common cold | journal = The Cochrane Database of Systematic Reviews | issue = 1 | pages = CD000980 | date = January 2013 | pmid = 23440782 | pmc = 1160577 | doi = 10.1002/14651858.CD000980.pub4 }}
6. ^{{cite journal | vauthors = Ye Y, Li J, Yuan Z | title = Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials | journal = PLOS One | volume = 8 | issue = 2 | pages = e56803 | year = 2013 | pmid = 23437244 | pmc = 3577664 | doi = 10.1371/journal.pone.0056803 | bibcode = 2013PLoSO...856803Y }}
7. ^{{cite journal | vauthors = Duerbeck NB, Dowling DD, Duerbeck JM | title = Vitamin C: Promises Not Kept | journal = Obstetrical & Gynecological Survey | volume = 71 | issue = 3 | pages = 187–93 | date = March 2016 | pmid = 26987583 | doi = 10.1097/OGX.0000000000000289 }}
8. ^{{cite web |title=Ascorbic acid Use During Pregnancy |url=https://www.drugs.com/pregnancy/ascorbic-acid.html |website=Drugs.com |access-date=December 30, 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20161231075819/https://www.drugs.com/pregnancy/ascorbic-acid.html |archivedate=December 31, 2016 |df=mdy-all}}
9. ^10 11 12 13 14 15 16 17 18 19 {{cite book | author = |title=Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids |chapter=Vitamin C |publisher=The National Academies Press |year=2000 |location=Washington, DC |pages=95–185 |chapter-url=https://www.nap.edu/read/9810/chapter/7 |access-date=September 1, 2017 |isbn=978-0-309-06935-9 |deadurl=no |archiveurl=https://web.archive.org/web/20170902180153/https://www.nap.edu/read/9810/chapter/7 |archivedate=September 2, 2017 |df=mdy-all }}
10. ^{{cite web |title=WHO Model List of Essential Medicines (19th List) |url=http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1 |work=World Health Organization |access-date=December 8, 2016 |date=April 2015 |deadurl=no |archiveurl=https://web.archive.org/web/20161213052708/http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1 |archivedate=December 13, 2016 |df=mdy-all}}
11. ^{{cite book |title=British national formulary : BNF 76 |date=2018 |publisher=Pharmaceutical Press |isbn=9780857113382 |page=1049 |edition=76}}
12. ^{{cite web |title=International Drug Price Indicator Guide. Vitamin C: Supplier Prices |url=http://mshpriceguide.org/en/single-drug-information/?DMFId=830&searchYear=2015 |publisher=Management Sciences for Health, Arlington, VA |date=2016 |access-date=March 22, 2017 |deadurl=no |archiveurl=https://web.archive.org/web/20170323233108/http://mshpriceguide.org/en/single-drug-information/?DMFId=830&searchYear=2015 |archivedate=March 23, 2017 |df=mdy-all}}
13. ^{{cite web |title=The Nobel Prize in Physiology or Medicine 1937 |url=https://www.nobelprize.org/nobel_prizes/medicine/laureates/1937 |publisher=Nobel Media AB |access-date=November 20, 2014 |deadurl=no |archiveurl=https://web.archive.org/web/20141105153327/http://www.nobelprize.org/nobel_prizes/medicine/laureates/1937/ |archivedate=November 5, 2014 |df=mdy-all}}
14. ^{{cite journal | vauthors = Zetterström R | title = Nobel Prize 1937 to Albert von Szent-Györgyi: identification of vitamin C as the anti-scorbutic factor | journal = Acta Paediatrica | volume = 98 | issue = 5 | pages = 915–9 | date = May 2009 | pmid = 19239412 | doi = 10.1111/j.1651-2227.2009.01239.x }}
15. ^{{cite journal |author=Meister A |title=Glutathione-ascorbic acid antioxidant system in animals |journal=J. Biol. Chem. |volume=269 |issue=13 |pages=9397–9400 |date=April 1994 |pmid=8144521 |url=http://www.jbc.org/content/269/13/9397.full.pdf+html |deadurl=no |archiveurl=https://web.archive.org/web/20150811212232/http://www.jbc.org/content/269/13/9397.full.pdf+html |archivedate=August 11, 2015 |df=mdy-all }}
16. ^{{cite book |veditors=Caudill MA, Rogers M |title=Biochemical, Physiological, and Molecular Aspects of Human Nutrition |edition=3 |publisher=Saunders |location=Philadelphia |year=2012 |pages=627–654 |isbn=978-1-4377-0959-9 |chapter=Vitamin C |vauthors=Michels A, Frei B }}
17. ^{{cite book |vauthors=Gropper SS, Smith JL, Grodd JL |title=Advanced nutrition and human metabolism |publisher=Thomson Wadsworth |location=Belmont, CA |year=2005 |pages= 260–275 |isbn=978-0-534-55986-1 }}
18. ^{{cite book |editor1-first=Naser A. |editor1-last=Anjum |editor2-first=Shahid |editor2-last=Umar |editor3-first=Ming-Tsair |editor3-last=Chan | name-list-format = vanc |date=September 13, 2010 |title=Ascorbate-Glutathione Pathway and Stress Tolerance in Plants |publisher=Springer |page=324 |url=https://books.google.com/books?id=HUgvF_9EwHcC&pg=PA324 |access-date=August 3, 2017 |isbn=978-9-048-19403-2 |deadurl=no |archiveurl=https://web.archive.org/web/20171105201705/https://books.google.com/books?id=HUgvF_9EwHcC&pg=PA324 |archivedate=November 5, 2017 |df=mdy-all }}
19. ^{{cite journal | vauthors = Pemberton J | title = Medical experiments carried out in Sheffield on conscientious objectors to military service during the 1939-45 war | journal = International Journal of Epidemiology | volume = 35 | issue = 3 | pages = 556–8 | date = June 2006 | pmid = 16510534 | doi = 10.1093/ije/dyl020 }}
20. ^{{cite journal | vauthors = Hodges RE, Baker EM, Hood J, Sauberlich HE, March SC | title = Experimental scurvy in man | journal = The American Journal of Clinical Nutrition | volume = 22 | issue = 5 | pages = 535–48 | date = May 1969 | pmid = 4977512 | doi = 10.1093/ajcn/22.5.535}}
21. ^{{cite journal | vauthors = Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C | title = Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases | journal = The Cochrane Database of Systematic Reviews | volume = 3 | issue = 3 | pages = CD007176 | date = March 2012 | pmid = 22419320 | doi = 10.1002/14651858.CD007176.pub2 }}
22. ^10 11 {{cite web |title=Ascorbic Acid |url=https://www.drugs.com/monograph/ascorbic-acid.html |publisher=The American Society of Health-System Pharmacists |access-date=December 8, 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20161230161611/https://www.drugs.com/monograph/ascorbic-acid.html |archivedate=December 30, 2016 |df=mdy-all}}
23. ^{{cite journal | vauthors = Manwaring WH | title = Ascorbic Acid vs. the Common Cold | journal = California and Western Medicine | volume = 62 | issue = 6 | pages = 309–10 | date = June 1945 | pmid = 18747053 | pmc = 1781017 | doi = }}
24. ^{{cite book |last=Pauling |first=Linus | name-list-format = vanc | year = 1970 | title = Vitamin C and the Common Cold|volume= |edition= 1|publisher=W. H. Freeman|publication-date= |location=San Francisco|pages= |url=https://openlibrary.org/books/OL4914696M/Vitamin_C_and_the_common_cold|access-date=August 12, 2016 |via= Open Library|isbn=9780716701590 }}
25. ^{{cite journal | vauthors = Heimer KA, Hart AM, Martin LG, Rubio-Wallace S | title = Examining the evidence for the use of vitamin C in the prophylaxis and treatment of the common cold | journal = Journal of the American Academy of Nurse Practitioners | volume = 21 | issue = 5 | pages = 295–300 | date = May 2009 | pmid = 19432914 | doi = 10.1111/j.1745-7599.2009.00409.x }}
26. ^{{cite journal | vauthors = Wintergerst ES, Maggini S, Hornig DH | title = Immune-enhancing role of vitamin C and zinc and effect on clinical conditions | journal = Annals of Nutrition & Metabolism | volume = 50 | issue = 2 | pages = 85–94 | year = 2006 | pmid = 16373990 | doi = 10.1159/000090495 }}
27. ^{{cite journal |author=EFSA Panel on Dietetic Products, Nutrition and Allergies |title=Scientific Opinion on the substantiation of health claims related to vitamin C and protection of DNA, proteins and lipids from oxidative damage (ID 129, 138, 143, 148), antioxidant function of lutein (ID 146), maintenance of vision (ID 141, 142), collagen formation (ID 130, 131, 136, 137, 149), function of the nervous system (ID 133), function of the immune system (ID 134), function of the immune system during and after extreme physical exercise (ID 144), non-haem iron absorption (ID 132, 147), energy-yielding metabolism (ID 135), and relief in case of irritation in the upper respiratory tract (ID 1714, 1715) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 |journal=EFSA Journal |volume=7 |issue=9 |year=2009 |page=1226 |doi=10.2903/j.efsa.2009.1226}}
28. ^{{cite journal |author=EFSA Panel on Dietetic Products, Nutrition and Allergies |title=Vitamin C and contribution to the normal function of the immune system: evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 |journal=EFSA Journal |year=2015 |volume=13 |issue=11 |page=4298 |doi=10.2903/j.efsa.2015.4298}}
29. ^{{cite journal | vauthors = Cortés-Jofré M, Rueda JR, Corsini-Muñoz G, Fonseca-Cortés C, Caraballoso M, Bonfill Cosp X | title = Drugs for preventing lung cancer in healthy people | journal = The Cochrane Database of Systematic Reviews | volume = 10 | issue = | pages = CD002141 | date = October 2012 | pmid = 23076895 | doi = 10.1002/14651858.CD002141.pub2 }}
30. ^{{cite journal | vauthors = Stratton J, Godwin M | title = The effect of supplemental vitamins and minerals on the development of prostate cancer: a systematic review and meta-analysis | journal = Family Practice | volume = 28 | issue = 3 | pages = 243–52 | date = June 2011 | pmid = 21273283 | doi = 10.1093/fampra/cmq115 }}
31. ^{{cite journal | vauthors = Xu X, Yu E, Liu L, Zhang W, Wei X, Gao X, Song N, Fu C | title = Dietary intake of vitamins A, C, and E and the risk of colorectal adenoma: a meta-analysis of observational studies | journal = European Journal of Cancer Prevention | volume = 22 | issue = 6 | pages = 529–39 | date = November 2013 | pmid = 24064545 | doi = 10.1097/CEJ.0b013e328364f1eb }}
32. ^{{cite journal | vauthors = Papaioannou D, Cooper KL, Carroll C, Hind D, Squires H, Tappenden P, Logan RF | title = Antioxidants in the chemoprevention of colorectal cancer and colorectal adenomas in the general population: a systematic review and meta-analysis | journal = Colorectal Disease | volume = 13 | issue = 10 | pages = 1085–99 | date = October 2011 | pmid = 20412095 | doi = 10.1111/j.1463-1318.2010.02289.x }}
33. ^{{cite journal | vauthors = Fulan H, Changxing J, Baina WY, Wencui Z, Chunqing L, Fan W, Dandan L, Dianjun S, Tong W, Da P, Yashuang Z | title = Retinol, vitamins A, C, and E and breast cancer risk: a meta-analysis and meta-regression | journal = Cancer Causes & Control | volume = 22 | issue = 10 | pages = 1383–96 | date = October 2011 | pmid = 21761132 | doi = 10.1007/s10552-011-9811-y }}
34. ^{{cite journal | vauthors = Harris HR, Orsini N, Wolk A | title = Vitamin C and survival among women with breast cancer: a meta-analysis | journal = European Journal of Cancer | volume = 50 | issue = 7 | pages = 1223–31 | date = May 2014 | pmid = 24613622 | doi = 10.1016/j.ejca.2014.02.013 }}
35. ^{{cite journal | vauthors = Fritz H, Flower G, Weeks L, Cooley K, Callachan M, McGowan J, Skidmore B, Kirchner L, Seely D | title = Intravenous Vitamin C and Cancer: A Systematic Review | journal = Integrative Cancer Therapies | volume = 13 | issue = 4 | pages = 280–300 | date = July 2014 | pmid = 24867961 | doi = 10.1177/1534735414534463 }}
36. ^{{cite journal | vauthors = Du J, Cullen JJ, Buettner GR | title = Ascorbic acid: chemistry, biology and the treatment of cancer | journal = Biochimica et Biophysica Acta | volume = 1826 | issue = 2 | pages = 443–57 | date = December 2012 | pmid = 22728050 | pmc = 3608474 | doi = 10.1016/j.bbcan.2012.06.003 }}
37. ^{{cite journal | vauthors = Parrow NL, Leshin JA, Levine M | title = Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics | journal = Antioxidants & Redox Signaling | volume = 19 | issue = 17 | pages = 2141–56 | date = December 2013 | pmid = 23621620 | pmc = 3869468 | doi = 10.1089/ars.2013.5372 }}
38. ^{{cite journal | vauthors = Wilson MK, Baguley BC, Wall C, Jameson MB, Findlay MP | title = Review of high-dose intravenous vitamin C as an anticancer agent | journal = Asia-Pacific Journal of Clinical Oncology | volume = 10 | issue = 1 | pages = 22–37 | date = March 2014 | pmid = 24571058 | doi = 10.1111/ajco.12173 }}
39. ^{{cite journal | vauthors = Jacobs C, Hutton B, Ng T, Shorr R, Clemons M | title = Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review | journal = The Oncologist | volume = 20 | issue = 2 | pages = 210–23 | date = February 2015 | pmid = 25601965 | pmc = 4319640 | doi = 10.1634/theoncologist.2014-0381 }}
40. ^{{cite journal | vauthors = Chen GC, Lu DB, Pang Z, Liu QF | title = Vitamin C intake, circulating vitamin C and risk of stroke: a meta-analysis of prospective studies | journal = Journal of the American Heart Association | volume = 2 | issue = 6 | pages = e000329 | date = November 2013 | pmid = 24284213 | pmc = 3886767 | doi = 10.1161/JAHA.113.000329 }}
41. ^{{cite journal | vauthors = Ashor AW, Lara J, Mathers JC, Siervo M | title = Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials | journal = Atherosclerosis | volume = 235 | issue = 1 | pages = 9–20 | date = July 2014 | pmid = 24792921 | doi = 10.1016/j.atherosclerosis.2014.04.004 }}
42. ^{{cite journal |vauthors=Travica N, Ried K, Sali A, Scholey A, Hudson I, Pipingas A |title=Vitamin C status and cognitive function: A systematic review |journal=Nutrients |volume=9 |issue=9 |pages=E960 |date=30 August 2017 |pmid=28867798 |pmc=5622720 |doi=10.3390/nu9090960}}
43. ^{{cite journal |vauthors=Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T |title=Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis |journal=Alzheimer's and Dementia |volume=10 |issue=4 |pages=485–502 |date=2014 |pmid=24144963 |doi=10.1016/j.jalz.2013.05.1771 |url=}}
44. ^{{cite journal | vauthors = Crichton GE, Bryan J, Murphy KJ | title = Dietary antioxidants, cognitive function and dementia--a systematic review | journal = Plant Foods for Human Nutrition | volume = 68 | issue = 3 | pages = 279–92 | date = September 2013 | pmid = 23881465 | doi = 10.1007/s11130-013-0370-0 }}
45. ^{{cite journal | vauthors = Li FJ, Shen L, Ji HF | title = Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer's disease: a meta-analysis | journal = Journal of Alzheimer's Disease | volume = 31 | issue = 2 | pages = 253–8 | year = 2012 | pmid = 22543848 | doi = 10.3233/JAD-2012-120349 }}
46. ^{{cite journal | vauthors = Harrison FE | title = A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease | journal = Journal of Alzheimer's Disease | volume = 29 | issue = 4 | pages = 711–26 | year = 2012 | pmid = 22366772 | pmc = 3727637 | doi = 10.3233/JAD-2012-111853 }}
47. ^{{cite journal | vauthors = Rosenbaum CC, O'Mathúna DP, Chavez M, Shields K | title = Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis | journal = Alternative Therapies in Health and Medicine | volume = 16 | issue = 2 | pages = 32–40 | year = 2010 | pmid = 20232616 | doi = }}
48. ^{{cite journal | vauthors = Mathew MC, Ervin AM, Tao J, Davis RM | title = Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract | journal = The Cochrane Database of Systematic Reviews | volume = 6 | issue = 6 | pages = CD004567 | date = June 2012 | pmid = 22696344 | pmc = 4410744 | doi = 10.1002/14651858.CD004567.pub2 }}
49. ^{{Cite web |url=https://medlineplus.gov/ency/article/002404.htm |title=Vitamin C: MedlinePlus Medical Encyclopedia |website=medlineplus.gov |access-date=July 23, 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20160728013605/https://medlineplus.gov/ency/article/002404.htm |archivedate=July 28, 2016 |df=mdy-all }}
50. ^{{cite book |last=Pauling |first=Linus | name-list-format = vanc |authorlink=Linus Pauling |year=1976 |title=Vitamin C, the Common Cold, and the Flu |publisher=W.H. Freeman and Company}}
51. ^{{cite journal | vauthors = Goodwin JS, Tangum MR | title = Battling quackery: attitudes about micronutrient supplements in American academic medicine | journal = Archives of Internal Medicine | volume = 158 | issue = 20 | pages = 2187–91 | date = November 1998 | pmid = 9818798 | doi = 10.1001/archinte.158.20.2187 }}
52. ^{{cite journal | vauthors = Naidu KA | title = Vitamin C in human health and disease is still a mystery? An overview | journal = Nutrition Journal | volume = 2 | issue = 7 | pages = 7 | date = August 2003 | pmid = 14498993 | pmc = 201008 | doi = 10.1186/1475-2891-2-7 | url = http://www.nutritionj.com/content/pdf/1475-2891-2-7.pdf | archiveurl = https://web.archive.org/web/20120918153239/http://www.nutritionj.com/content/pdf/1475-2891-2-7.pdf | df = mdy-all | deadurl = no | archivedate = September 18, 2012 }}
53. ^{{cite journal | vauthors = Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A | title = Ascorbic acid supplements and kidney stone incidence among men: a prospective study | journal = JAMA Internal Medicine | volume = 173 | issue = 5 | pages = 386–8 | date = March 2013 | pmid = 23381591 | doi = 10.1001/jamainternmed.2013.2296 }}
54. ^{{cite web |url=http://ninindia.org/DietaryGuidelinesforNINwebsite.pdf |title=Dietary Guidelines for Indians |publisher=National Institute of Nutrition, India |date=2011}}
55. ^{{cite book |author=World Health Organization |title=Vitamin and Mineral Requirements in Human Nutrition, Second Edition |publisher=World Health Organization |location=Geneva |year=2004 |pages= |isbn=978-92-4-154612-6 |chapter=Chapter 7: Vitamin C |chapterurl=http://whqlibdoc.who.int/publications/2004/9241546123_chap7.pdf |access-date=February 20, 2007 |deadurl=no |url=http://whqlibdoc.who.int/publications/2004/9241546123_chap7.pdf |archive-url=https://web.archive.org/web/20071129082535/http://whqlibdoc.who.int/publications/2004/9241546123_chap7.pdf |archivedate=November 29, 2007 |df=mdy-all }}
56. ^{{cite web |url=http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32008L0100 |title=Commission Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions |publisher=The Commission of the European Communities |access-date= |deadurl=no |archiveurl=https://web.archive.org/web/20161002233059/http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0100 |archivedate=October 2, 2016 |df=mdy-all |date=2008-10-29 }}
57. ^{{cite web |url=http://www.hc-sc.gc.ca/dhp-mps/prodnatur/applications/licen-prod/monograph/mono_vitamin_c-eng.php |work=Natural Health Product Monograph |title=Vitamin C |publisher=Health Canada |access-date= |deadurl=yes |archiveurl=https://web.archive.org/web/20130403150228/http://www.hc-sc.gc.ca/dhp-mps/prodnatur/applications/licen-prod/monograph/mono_vitamin_c-eng.php |archivedate=April 3, 2013 }}
58. ^[https://www.jstage.jst.go.jp/article/jnsv/59/Supplement/59_S67/_pdf Dietary Reference Intakes for Japanese 2010: Water-Soluble Vitamins] Journal of Nutritional Science and Vitaminology 2013(59):S67-S82.
59. ^{{cite web |title=Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies |year=2017 |url=https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf |deadurl=no |archiveurl=https://web.archive.org/web/20170828082247/https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf |archivedate=August 28, 2017 |df=mdy-all}}
60. ^{{cite journal | vauthors = Luo J, Shen L, Zheng D | title = Association between vitamin C intake and lung cancer: a dose-response meta-analysis | journal = Scientific Reports | volume = 4 | issue = | pages = 6161 | date = 2014 | pmid = 25145261 | pmc = 5381428 | doi = 10.1038/srep06161 | bibcode = 2014NatSR...4E6161L }}
61. ^[https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1314/Table_1_NIN_GEN_13.pdf "TABLE 1: Nutrient Intakes from Food and Beverages"] {{webarchive |url=https://web.archive.org/web/20170224042515/https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1314/Table_1_NIN_GEN_13.pdf |date=February 24, 2017 }} What We Eat In America, NHANES 2012-2014
62. ^[https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1314/Table_37_SUP_GEN_13.pdf "TABLE 37: Nutrient Intakes from Dietary Supplements"] {{webarchive |url=https://web.archive.org/web/20171006162231/https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1314/Table_37_SUP_GEN_13.pdf |date=October 6, 2017 }} What We Eat In America, NHANES 2012-2014
63. ^{{cite web |title=Tolerable Upper Intake Levels For Vitamins And Minerals |publisher=European Food Safety Authority |year=2006 |url=http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf |deadurl=no |archiveurl=https://web.archive.org/web/20160316225123/http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf |archivedate=March 16, 2016 |df=mdy-all}}
64. ^{{cite web |url=https://www.gpo.gov/fdsys/pkg/FR-2016-05-27/pdf/2016-11867.pdf |title=Federal Register May 27, 2016 Food Labeling: Revision of the Nutrition and Supplement Facts Labels. FR page 33982. |deadurl=no |archiveurl=https://web.archive.org/web/20160808164651/https://www.gpo.gov/fdsys/pkg/FR-2016-05-27/pdf/2016-11867.pdf |archivedate=August 8, 2016 |df=mdy-all }}
65. ^{{cite web |url=https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm385663.htm#dates|title=Changes to the Nutrition Facts Panel - Compliance Date |last= |first= |date= |website=US Department of Agriculture|access-date=9 August 2018}}
66. ^REGULATION (EU) No 1169/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Official Journal of the European Union. page 304/61. (2009).
67. ^{{Cite journal | vauthors = Duarte A, Caixeirinho D, Miguel G, Sustelo V, Nunes C, Mendes M, Marreiros A |date=2010|title=Vitamin C Content of Citrus from Conventional versus Organic Farming Systems| url=https://www.researchgate.net/publication/216361377|journal=Acta Horticulturae|volume=868|issue=868|pages=389–394 |doi = 10.17660/ActaHortic.2010.868.52}}
68. ^{{cite web |title=The vitamin and mineral content is stable |url=http://www.uk.foedevarestyrelsen.dk/Nutrition/Vitamin_mineral_content_is_stable/forside.htm |publisher=Danish Veterinary and Food Administration |access-date=November 20, 2014 |archiveurl=https://web.archive.org/web/20111014053424/http://www.uk.foedevarestyrelsen.dk/Nutrition/Vitamin_mineral_content_is_stable/forside.htm |archivedate=October 14, 2011}}
69. ^{{cite web |url=http://ndb.nal.usda.gov/ |title=NDL/FNIC Food Composition Database Home Page |access-date=November 20, 2014 |publisher=USDA Nutrient Data Laboratory, the Food and Nutrition Information Center and Information Systems Division of the National Agricultural Library. |deadurl=no |archiveurl=https://web.archive.org/web/20141115094406/http://ndb.nal.usda.gov/ |archivedate=November 15, 2014 |df=mdy-all }}
70. ^{{cite web |url=http://www.naturalhub.com/natural_food_guide_fruit_vitamin_c.htm |title=Natural food-Fruit Vitamin C Content |access-date=March 7, 2007 |publisher=The Natural Food Hub |deadurl=no |archiveurl=https://web.archive.org/web/20070307160608/http://www.naturalhub.com/natural_food_guide_fruit_vitamin_c.htm |archivedate=March 7, 2007 |df=mdy-all }}
71. ^[https://ndb.nal.usda.gov/ndb/search/list USDA Food Composition Databases] United States Department of Agriculture, Agricultural Research Service. Release 28 (2015).
72. ^{{cite journal |title=The nutritional composition of Australian aboriginal bushfoods. I |year=1987 |vauthors=Brand JC, Rae C, McDonnell J, Lee A, Cherikoff V, Truswell AS |journal=Food Technology in Australia |volume=35 |issue=6 |pages=293–296 }}
73. ^{{cite journal | vauthors = Justi KC, Visentainer JV, Evelázio de Souza N, Matsushita M | title = Nutritional composition and vitamin C stability in stored camu-camu (Myrciaria dubia) pulp | journal = Archivos Latinoamericanos de Nutricion | volume = 50 | issue = 4 | pages = 405–8 | date = December 2000 | pmid = 11464674 | doi = }}
74. ^{{cite journal |title=Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity |vauthors=Vendramini AL, Trugo LC |journal=Food Chemistry |volume=71 |issue=2 |year=2000 |pages=195–198 |doi=10.1016/S0308-8146(00)00152-7 }}
75. ^{{cite journal | vauthors = Chatterjee IB | title = Evolution and the biosynthesis of ascorbic acid | journal = Science | volume = 182 | issue = 4118 | pages = 1271–2 | date = December 1973 | pmid = 4752221 | doi = 10.1126/science.182.4118.1271 | bibcode = 1973Sci...182.1271C }}
76. ^[https://ndb.nal.usda.gov/ndb/search/list USDA Food Composition Databases] United States Department of Agriculture, Agricultural Research Service. Release 28 (2015).
77. ^{{cite web |url=http://www.saanendoah.com/compare.html |title= Comparing Milk: Human, Cow, Goat & Commercial Infant Formula |access-date=February 28, 2007 |date=January 8, 2007 |author=Clark S |publisher=Washington State University |archiveurl=https://web.archive.org/web/20070129024619/http://www.saanendoah.com/compare.html |archivedate=January 29, 2007}}
78. ^{{cite journal | vauthors = Roig MG, Rivera ZS, Kennedy JF | title = A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates | journal = International Journal of Food Sciences and Nutrition | volume = 46 | issue = 2 | pages = 107–15 | date = May 1995 | pmid = 7621082 | doi = 10.3109/09637489509012538 }}
79. ^{{cite journal | vauthors = Allen MA, Burgess SG | title = The losses of ascorbic acid during the large-scale cooking of green vegetables by different methods | journal = The British Journal of Nutrition | volume = 4 | issue = 2–3 | pages = 95–100 | year = 1950 | pmid = 14801407 | doi = 10.1079/BJN19500024 }}
80. ^{{cite web |url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |title=Safety (MSDS) data for ascorbic acid |access-date=February 21, 2007 |date=October 9, 2005 |publisher=Oxford University |deadurl=no |archiveurl=https://archive.today/20070209221915/http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |archivedate=February 9, 2007 |df=mdy-all }}
81. ^{{cite book | vauthors = Combs GF |title=The Vitamins, Fundamental Aspects in Nutrition and Health |edition=2nd |place=San Diego, CA |publisher=Academic Press |year=2001 |pages=245–272 |isbn=978-0-12-183492-0}}
82. ^{{cite web |url=http://www.webmd.com/content/article/123/115022.htm |title=Fresh-Cut Fruit May Keep Its Vitamins |access-date=February 25, 2007 |date=June 2, 2006 | vauthors = Miranda H |publisher=WebMD |deadurl=no |archiveurl=https://web.archive.org/web/20060726214513/http://www.webmd.com/content/article/123/115022.htm |archivedate=July 26, 2006 |df=mdy-all }}
83. ^{{cite journal | vauthors = Davis JL, Paris HL, Beals JW, Binns SE, Giordano GR, Scalzo RL, Schweder MM, Blair E, Bell C | title = Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury | journal = Nutrition and Metabolic Insights | volume = 9 | issue = | pages = 25–30 | year = 2016 | pmid = 27375360 | pmc = 4915787 | doi = 10.4137/NMI.S39764 }}
84. ^{{cite web |url=http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/nutrient-content/reference-information/eng/1389908857542/1389908896254?chap=1 |title=Addition of Vitamins and Minerals to Food, 2014 |access-date=November 20, 2017 |publisher=Canadian Food Inspection Agency, Government of Canada }}
85. ^UK Food Standards Agency: {{cite web |url=http://www.food.gov.uk/safereating/chemsafe/additivesbranch/enumberlist |title=Current EU approved additives and their E Numbers |accessdate=2011-10-27}}
86. ^U.S. Food and Drug Administration: {{cite web|url=http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/FoodAdditiveListings/ucm091048.htm |title=Listing of Food Additives Status Part I |accessdate=2011-10-27 |deadurl=yes |archiveurl=https://web.archive.org/web/20120117060614/http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/FoodAdditiveListings/ucm091048.htm |archivedate=2012-01-17 |df= }}
87. ^Australia New Zealand Food Standards Code{{cite web |url=http://www.comlaw.gov.au/Details/F2011C00827 |title=Standard 1.2.4 – Labelling of ingredients |accessdate=2011-10-27}}
88. ^U.S. Food and Drug Administration: {{cite web |url=http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/ucm191033.htm#ftnT |title=Listing of Food Additives Status Part II |accessdate=2011-10-27}}
89. ^{{cite journal | vauthors = Prockop DJ, Kivirikko KI | title = Collagens: molecular biology, diseases, and potentials for therapy | journal = Annual Review of Biochemistry | volume = 64 | issue = | pages = 403–434 | year = 1995 | pmid = 7574488 | doi = 10.1146/annurev.bi.64.070195.002155 }}
90. ^{{cite journal | vauthors = Peterkofsky B | title = Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy | journal = The American Journal of Clinical Nutrition | volume = 54 | issue = 6 Suppl | pages = 1135S–1140S | date = December 1991 | pmid = 1720597 | doi = 10.1093/ajcn/54.6.1135s| url = http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=1720597 }}
91. ^{{cite journal | vauthors = Kivirikko KI, Myllylä R | title = Post-translational processing of procollagens | journal = Annals of the New York Academy of Sciences | volume = 460 | issue = 1| pages = 187–201 | year = 1985 | pmid = 3008623 | doi = 10.1111/j.1749-6632.1985.tb51167.x | bibcode = 1985NYASA.460..187K }}
92. ^{{cite journal | vauthors = Ang A, Pullar JM, Currie MJ, Vissers M | title = Vitamin C and immune cell function in inflammation and cancer | journal = Biochemical Society Transactions | volume = 46 | issue = 5 | pages = 1147–1159 | date = 2018 | pmid = 30301842 | pmc = 6195639 | doi = 10.1042/BST20180169 }}
93. ^{{cite journal | vauthors = Metzen E | title = Enzyme substrate recognition in oxygen sensing: how the HIF trap snaps | journal = The Biochemical Journal | volume = 408 | issue = 2 | pages = e5–6 | date = 2007 | pmid = 17990984 | pmc = 2267343 | doi = 10.1042/BJ20071306 | quote = The HIFalpha hydroxylases belong to a superfamily of dioxygenases that require the co-substrates oxygen and 2-oxoglutarate as well as the cofactors Fe2+ and ascorbate. The regulation of enzyme turnover by the concentration of the cosubstrate oxygen constitutes the interface between tissue oxygen level and the activity of HIF. The HIFalpha prolyl hydroxylases, termed PHDs/EGLNs (prolyl hydroxylase domain proteins/EGL nine homologues), bind to a conserved Leu-Xaa-Xaa-Leu-Ala-Pro motif present in all substrates identified so far.}}
94. ^{{cite journal | vauthors = Levine M, Dhariwal KR, Washko P, Welch R, Wang YH, Cantilena CC, Yu R | title = Ascorbic acid and reaction kinetics in situ: a new approach to vitamin requirements | journal = Journal of Nutritional Science and Vitaminology | volume = Spec No | issue = | pages = 169–172 | year = 1992 | pmid = 1297733 | doi = 10.3177/jnsv.38.Special_169 }}
95. ^{{cite journal | vauthors = Kaufman S | title = Dopamine-beta-hydroxylase | journal = Journal of Psychiatric Research | volume = 11 | issue = | pages = 303–316 | year = 1974 | pmid = 4461800 | doi = 10.1016/0022-3956(74)90112-5 }}
96. ^{{cite journal | vauthors = Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE | title = Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains | journal = Protein Science | volume = 2 | issue = 4 | pages = 489–497 | date = 1993 | pmid = 8518727 | pmc = 2142366 | doi = 10.1002/pro.5560020401 }}
97. ^{{cite journal | vauthors = Eipper BA, Stoffers DA, Mains RE | title = The biosynthesis of neuropeptides: peptide alpha-amidation | journal = Annual Review of Neuroscience | volume = 15 | issue = | pages = 57–85 | year = 1992 | pmid = 1575450 | doi = 10.1146/annurev.ne.15.030192.000421 }}
98. ^{{cite journal | vauthors = Wilson JX | title = Regulation of vitamin C transport | journal = Annual Review of Nutrition | volume = 25 | pages = 105–125 | year = 2005 | pmid = 16011461 | doi = 10.1146/annurev.nutr.25.050304.092647 }}
99. ^{{cite journal | vauthors = Savini I, Rossi A, Pierro C, Avigliano L, Catani MV | title = SVCT1 and SVCT2: key proteins for vitamin C uptake | journal = Amino Acids | volume = 34 | issue = 3 | pages = 347–355 | date = April 2008 | pmid = 17541511 | doi = 10.1007/s00726-007-0555-7 }}
100. ^{{cite journal | vauthors = Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M | title = Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid | journal = The Journal of Biological Chemistry | volume = 272 | issue = 30 | pages = 18982–18989 | date = July 1997 | pmid = 9228080 | doi = 10.1074/jbc.272.30.18982 }}
101. ^{{cite journal | vauthors = May JM, Qu ZC, Neel DR, Li X | title = Recycling of vitamin C from its oxidized forms by human endothelial cells | journal = Biochimica et Biophysica Acta | volume = 1640 | issue = 2–3 | pages = 153–161 | date = May 2003 | pmid = 12729925 | doi = 10.1016/S0167-4889(03)00043-0 }}
102. ^{{cite journal | vauthors = May JM, Qu ZC, Qiao H, Koury MJ | title = Maturational loss of the vitamin C transporter in erythrocytes | journal = Biochemical and Biophysical Research Communications | volume = 360 | issue = 1 | pages = 295–298 | date = August 2007 | pmid = 17586466 | pmc = 1964531 | doi = 10.1016/j.bbrc.2007.06.072 }}
103. ^{{cite journal | vauthors = Padayatty SJ, Levine M | title = Vitamin C: the known and the unknown and Goldilocks | journal = Oral Diseases | volume = 22 | issue = 6 | pages = 463–493 | date = September 2016 | pmid = 26808119 | pmc = 4959991 | doi = 10.1111/odi.12446 }}
104. ^{{cite journal | vauthors = Oreopoulos DG, Lindeman RD, VanderJagt DJ, Tzamaloukas AH, Bhagavan HN, Garry PJ | title = Renal excretion of ascorbic acid: effect of age and sex | journal = Journal of the American College of Nutrition | volume = 12 | issue = 5 | pages = 537–542 | date = October 1993 | pmid = 8263270 | doi = 10.1080/07315724.1993.10718349 }}
105. ^{{cite web |url=http://www.foodafactoflife.org.uk/attachments/ff2caf4a-75e5-4aa129132873.pdf |title=Testing Foods for Vitamin C (Ascorbic Acid) |publisher=British Nutrition Foundation |date=2004 |deadurl=no |archiveurl=https://web.archive.org/web/20151123101705/http://www.foodafactoflife.org.uk/attachments/ff2caf4a-75e5-4aa129132873.pdf |archivedate=November 23, 2015 |df=mdy-all}}
106. ^{{cite web |url=http://www.nuffieldfoundation.org/practical-biology/measuring-vitamin-c-content-foods-and-fruit-juices |title=Measuring the Vitamin C content of foods and fruit juices |publisher=Nuffield Foundation |date=November 24, 2011 |deadurl=no |archiveurl=https://web.archive.org/web/20150721181046/http://www.nuffieldfoundation.org/practical-biology/measuring-vitamin-c-content-foods-and-fruit-juices |archivedate=July 21, 2015 |df=mdy-all}}
107. ^{{cite journal | vauthors = Emadi-Konjin P, Verjee Z, Levin AV, Adeli K | title = Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC) | journal = Clinical Biochemistry | volume = 38 | issue = 5 | pages = 450–6 | date = May 2005 | pmid = 15820776 | doi = 10.1016/j.clinbiochem.2005.01.018 }}
108. ^{{cite journal | vauthors = Yamada H, Yamada K, Waki M, Umegaki K | title = Lymphocyte and plasma vitamin C levels in type 2 diabetic patients with and without diabetes complications | journal = Diabetes Care | volume = 27 | issue = 10 | pages = 2491–2 | date = October 2004 | pmid = 15451922 | doi = 10.2337/diacare.27.10.2491 }}
109. ^{{Cite journal | doi=10.1371/journal.pone.0001092| pmid=17971855| pmc=2034532|title = Biosynthesis of Vitamin C by Yeast Leads to Increased Stress Resistance| journal=PLOS ONE| volume=2| issue=10| pages=e1092|year = 2007|last1 = Branduardi|first1 = Paola| last2=Fossati| first2=Tiziana| last3=Sauer| first3=Michael| last4=Pagani| first4=Roberto| last5=Mattanovich| first5=Diethard| last6=Porro| first6=Danilo}}
110. ^{{cite journal | vauthors = Wheeler GL, Jones MA, Smirnoff N | title = The biosynthetic pathway of vitamin C in higher plants | journal = Nature | volume = 393 | issue = 6683 | pages = 365–9 | date = May 1998 | pmid = 9620799 | doi = 10.1038/30728 | bibcode = 1998Natur.393..365W }}
111. ^{{citation | url = http://www.seanet.com/~alexs/ascorbate/197x/stone-i-orthomol_psych-1972-v1-n2-3-p82.htm | title = The Natural History of Ascorbic Acid in the Evolution of Mammals and Primates | first = Irwin | last = Stone | year = 1972}}
112. ^{{cite journal | vauthors = Bánhegyi G, Mándl J | title = The hepatic glycogenoreticular system | journal = Pathology Oncology Research | volume = 7 | issue = 2 | pages = 107–10 | year = 2001 | pmid = 11458272 | doi = 10.1007/BF03032575 | citeseerx = 10.1.1.602.5659 }}
113. ^{{cite journal | title = Biosynthesis of L-Ascorbic Acid in Plants: New Pathways for an Old Antioxidant |author1=Valpuesta, V. |author2=Botella, M. A. | journal = Trends in Plant Science | year = 2004 | volume = 9 | issue = 12 | pages = 573–577 | pmid = 15564123 | doi = 10.1016/j.tplants.2004.10.002 | url = http://www.bmbq.uma.es/lbbv/index_archivos/pdf/Valpuesta%202004.pdf }}
114. ^{{cite journal | vauthors = Nishikimi M, Yagi K | title = Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis | journal = The American Journal of Clinical Nutrition | volume = 54 | issue = 6 Suppl | pages = 1203S–1208S | date = December 1991 | pmid = 1962571 | doi = 10.1093/ajcn/54.6.1203s}}
115. ^{{cite journal | vauthors = Nishikimi M, Kawai T, Yagi K | title = Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species | journal = The Journal of Biological Chemistry | volume = 267 | issue = 30 | pages = 21967–72 | date = October 1992 | pmid = 1400507 | doi = }}
116. ^{{cite journal | vauthors = Ohta Y, Nishikimi M | title = Random nucleotide substitutions in primate nonfunctional gene for L-gulono-gamma-lactone oxidase, the missing enzyme in L-ascorbic acid biosynthesis | journal = Biochimica et Biophysica Acta | volume = 1472 | issue = 1–2 | pages = 408–11 | date = October 1999 | pmid = 10572964 | doi = 10.1016/S0304-4165(99)00123-3 }}
117. ^Figure 2 in [https://www.seanet.com/~alexs/ascorbate/197x/stone-i-orthomol_psych-1972-v1-n2-3-p82.htm The Natural History of Ascorbic Acid in the Evolution of the Mammals and Primates and Its Significance for Present Day Man] Stone I. Orthomolecular Psychiatry 1972;1:82-89. {{webarchive |url=https://web.archive.org/web/20170130081358/http://www.seanet.com/~alexs/ascorbate/197x/stone-i-orthomol_psych-1972-v1-n2-3-p82.htm |date=January 30, 2017 }}
118. ^{{cite book | author = Dewick, P. M. | title = Medicinal Natural Products: A Biosynthetic Approach | edition = 3rd | year = 2009 | isbn = 978-0470741672 | publisher = John Wiley and Sons | page = 493 }}
119. ^{{cite journal | vauthors = Linster CL, Van Schaftingen E | title = Vitamin C. Biosynthesis, recycling and degradation in mammals | journal = The FEBS Journal | volume = 274 | issue = 1 | pages = 1–22 | date = January 2007 | pmid = 17222174 | doi = 10.1111/j.1742-4658.2006.05607.x }}
120. ^{{cite book | first1 = R. Eric | last1 = Miller | first2 = Murray E. | last2 = Fowler | name-list-format = vanc | title = Fowler's Zoo and Wild Animal Medicine, Volume 8 | page = 389 | url = https://books.google.com/?id=llBcBAAAQBAJ&pg=PA389&lpg=PA389&dq=Caviidae+%22vitamin+C%22#v=onepage&q=Caviidae%20%22vitamin%20C%22&f=false |access-date=June 2, 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20161207032904/https://books.google.com/books?id=llBcBAAAQBAJ&pg=PA389&lpg=PA389&dq=Caviidae+%22vitamin+C%22&source=bl&ots=ofF-Bu-mx-&sig=nPEZZ68O7v26lmGS9eAGfmaUZ1o&hl=en&sa=X&ved=0ahUKEwiIk471gInNAhUT0WMKHWlpAqAQ6AEISDAH#v=onepage&q=Caviidae%20%22vitamin%20C%22&f=false |archivedate=December 7, 2016 |df=mdy-all| isbn = 9781455773992 | date = 2014-07-31 }}
121. ^{{cite journal |title=Can passerines synthesize vitamin C? |author=Martinez del Rio C |journal= The Auk |date=July 1997 |volume=114 |issue=3 |pages=513–516 |jstor=4089257 |doi=10.2307/4089257 }}
122. ^{{cite journal | vauthors = Drouin G, Godin JR, Pagé B | title = The genetics of vitamin C loss in vertebrates | journal = Current Genomics | volume = 12 | issue = 5 | pages = 371–8 | date = August 2011 | pmid = 22294879 | pmc = 3145266 | doi = 10.2174/138920211796429736 }}
123. ^{{cite journal |doi=10.1016/0305-0491(80)90131-5 |title=Variation of l-gulonolactone oxidase activity in placental mammals |year=1980 |vauthors=Jenness R, Birney E, Ayaz K |journal=Comparative Biochemistry and Physiology B |volume=67 |issue=2 |pages=195–204 }}
124. ^{{cite journal | vauthors = Cui J, Pan YH, Zhang Y, Jones G, Zhang S | title = Progressive pseudogenization: vitamin C synthesis and its loss in bats | journal = Molecular Biology and Evolution | volume = 28 | issue = 2 | pages = 1025–31 | date = February 2011 | pmid = 21037206 | doi = 10.1093/molbev/msq286 }}
125. ^{{cite journal | vauthors = Cui J, Yuan X, Wang L, Jones G, Zhang S | title = Recent loss of vitamin C biosynthesis ability in bats | journal = PLOS One | volume = 6 | issue = 11 | pages = e27114 | date = Nov 2011 | pmid = 22069493 | pmc = 3206078 | doi = 10.1371/journal.pone.0027114 | bibcode = 2011PLoSO...627114C }}
126. ^{{cite journal | vauthors = Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N | title = Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C | journal = Cell | volume = 132 | issue = 6 | pages = 1039–48 | date = March 2008 | pmid = 18358815 | doi = 10.1016/j.cell.2008.01.042 | laysummary = https://www.sciencedaily.com/releases/2008/03/080320120726.htm | laydate = March 21, 2008 | laysource = Science Daily }}
127. ^{{cite journal | vauthors = Milton K | title = Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? | journal = Nutrition | volume = 15 | issue = 6 | pages = 488–98 | date = June 1999 | pmid = 10378206 | doi = 10.1016/S0899-9007(99)00078-7 | url = http://www.direct-ms.org/pdf/EvolutionPaleolithic/primaten.pdf | archiveurl = https://web.archive.org/web/20170810090049/http://www.direct-ms.org/pdf/EvolutionPaleolithic/primaten.pdf | df = mdy-all | deadurl = no | archivedate = August 10, 2017 | citeseerx = 10.1.1.564.1533 }}
128. ^{{cite journal | author = Leferink, N. G. | author2 = van den Berg, W. A. | author3 = van Berkel, W. J. | title = L-Galactono-γ-lactone Dehydrogenase from Arabidopsis thaliana, a Flavoprotein Involved in Vitamin C Biosynthesis | journal = FEBS Journal | year = 2008 | volume = 275 | issue = 4 | pages = 713–726 | doi = 10.1111/j.1742-4658.2007.06233.x | pmid = 18190525 }}
129. ^{{cite journal |author1=Mieda, T. |author2=Yabuta, Y. |author3=Rapolu, M. |author4=Motoki, T. |author5=Takeda, T. |author6=Yoshimura, K. |author7=Ishikawa, T. |author8=Shigeoka, S. | title = Feedback Inhibition of Spinach L-Galactose Dehydrogenase by L-Ascorbate | journal = Plant and Cell Physiology | year = 2004 | volume = 45 | issue = 9 | pages = 1271–1279 | doi = 10.1093/pcp/pch152 | url = http://pcp.oxfordjournals.org/content/45/9/1271.full.pdf | pmid=15509850}}
130. ^{{cite journal |last=Grillet|first=L |author2=Ouerdane L |author3=Flis P |author4=Hoang MTT |author5=Isaure MP |author6=Lobinski R |author7=Curie C |author8=Mari S|title=Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants|journal=The Journal of Biological Chemistry|volume=289 |date=January 31, 2014|issue=5|pages=2515–2525|doi=10.1074/jbc.M113.514828|pmid=24347170 |pmc=3908387}}
131. ^{{cite journal | vauthors = Gallie DR | title = L-ascorbic Acid: a multifunctional molecule supporting plant growth and development | journal = Scientifica | volume = 2013 | issue = | pages = 1–24 | year = 2013 | pmid = 24278786 | pmc = 3820358 | doi = 10.1155/2013/795964 }}
132. ^{{cite journal | vauthors = Bulley S, Laing W | title = The regulation of ascorbate biosynthesis | journal = Current Opinion in Plant Biology | volume = 33 | issue = | pages = 15–22 | date = October 2016 | pmid = 27179323 | doi = 10.1016/j.pbi.2016.04.010 }}
133. ^{{cite journal | vauthors = Mellidou I, Kanellis AK | title = Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops | journal = Frontiers in Chemistry | volume = 5 | issue = | pages = 50 | year = 2017 | pmid = 28744455 | pmc = 5504230 | doi = 10.3389/fchem.2017.00050 | bibcode = 2017FrCh....5...50M }}
134. ^{{Cite journal | last1 = Lachapelle | first1 = MY | last2 = Drouin | first2 = G | doi = 10.1007/s10709-010-9537-x | title = Inactivation dates of the human and guinea pig vitamin C genes | journal = Genetica | volume = 139 | issue = 2 | pages = 199–207 | year = 2010 | pmid = 21140195}}
135. ^{{cite journal | vauthors = Drouin G, Godin JR, Pagé B | title = The genetics of vitamin C loss in vertebrates | journal = Current Genomics | volume = 12 | issue = 5 | pages = 371–378 | date=2011 | pmc = 3145266 | doi = 10.2174/138920211796429736 | pmid = 22294879 }}
136. ^{{cite journal | vauthors = Yang H | title = Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis | journal = Biochemical Genetics | volume = 51 | issue = 5–6 | pages = 413–425 | date=2013 | pmid = 23404229 | doi = 10.1007/s10528-013-9574-0 }}
137. ^{{cite journal |vauthors = Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M |title = Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates |journal = Genome Biology |volume = 11 |issue = 3 |pages = R26 |date=2010 |pmid = 20210993 |pmc = 2864566 |doi = 10.1186/gb-2010-11-3-r26}}
138. ^{{cite journal | vauthors = Koshizaka T, Nishikimi M, Ozawa T, Yagi K | title = Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis | journal = The Journal of Biological Chemistry |volume = 263 |issue = 4 | pages = 1619–1621 |date=1988 |pmid = 3338984}}
139. ^{{cite journal | vauthors = Pollock JI, Mullin RJ | title = Vitamin C biosynthesis in prosimians: evidence for the anthropoid affinity of Tarsius | journal = American Journal of Physical Anthropology | volume = 73 | issue = 1 | pages = 65–70 | date=1987 | pmid = 3113259 | doi = 10.1002/ajpa.1330730106 }}
140. ^{{cite journal | vauthors = Poux C, Douzery EJ | title = Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP | journal = American Journal of Physical Anthropology | volume = 124 | issue = 1 | pages = 01–16 | date=2004 | pmid = 15085543 | doi = 10.1002/ajpa.10322 }}
141. ^{{cite journal | vauthors = Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP | title = Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence | journal = Molecular Phylogenetics and Evolution | volume = 9 | issue = 3 | pages = 585–598 | date=1998 | pmid = 9668008 | doi = 10.1006/mpev.1998.0495 }}
142. ^{{cite journal |vauthors=Porter CA, Page SL, Czelusniak J, Schneider H, Schneider MP, Sampaio I, Goodman M |title=Phylogeny and Evolution of Selected Primates as Determined by Sequences of the ε-Globin Locus and 5′ Flanking Regions |journal=International Journal of Primatology |date= 1997 |volume=18 |issue=2 |pages=261–295 |doi=10.1023/A:1026328804319 }}
143. ^{{cite journal | title=Vitamin C biosynthesis in prosimians: Evidence for the anthropoid affinity of Tarsius |author1=Pollock, JI |author2=Mullin, RJ |lastauthoramp=yes | journal=Amer J Physical Anthropology | year=1986 | volume=73 | issue=1 | pages=65–70 | doi=10.1002/ajpa.1330730106 | url=http://www3.interscience.wiley.com/journal/110488482/abstract?CRETRY=1&SRETRY=0 | archive-url=https://archive.today/20120628232930/http://www3.interscience.wiley.com/journal/110488482/abstract?CRETRY=1&SRETRY=0 | dead-url=yes | archive-date=2012-06-28 | pmid=3113259}}
144. ^{{cite journal | vauthors = Proctor P | title = Similar functions of uric acid and ascorbate in man? | journal = Nature | volume = 228 | issue = 5274 | pages = 868 | date = 1970 | pmid = 5477017 | doi = 10.1038/228868a0 | bibcode = 1970Natur.228..868P }}
145. ^{{cite web |url=http://www.competition-commission.org.uk/rep_pub/reports/2001/fulltext/456a4.2.pdf |archive-url=http://webarchive.nationalarchives.gov.uk/20120119194657/http://www.competition-commission.org.uk/rep_pub/reports/2001/fulltext/456a4.2.pdf |dead-url=yes |archivedate=January 19, 2012 |title=The production of vitamin C |access-date=February 20, 2007 |year=2001 |publisher=Competition Commission }}
146. ^{{cite web |url=http://www.nutraingredients.com/Industry/DSM-vitamin-plant-gains-green-thumbs-up |title=DSM vitamin plant gains green thumbs-up |author=Starling S |publisher=Decision News Media SAS |date=June 26, 2008 |access-date=February 25, 2010 |deadurl=no |archiveurl=https://web.archive.org/web/20120314061318/http://www.nutraingredients.com/Industry/DSM-vitamin-plant-gains-green-thumbs-up |archivedate=March 14, 2012 |df=mdy-all }}
147. ^{{cite web |url=http://www.flex-news-food.com/console/PageViewer.aspx?page=17441 |title=Vitamin C: Distruptions to Production in China to Maintain Firm Market |publisher=Flexnews |date=June 30, 2008 |access-date=February 25, 2010 |deadurl=no |archiveurl=https://web.archive.org/web/20131002063101/http://www.flex-news-food.com/console/PageViewer.aspx?page=17441 |archivedate=October 2, 2013 |df=mdy-all }}
148. ^{{cite news |url=http://www.globaltimes.cn/www/english/metro-beijing/update/business/2010-10/580763.html |title=Bizbites October 11 |date=October 11, 2010 |work=Global Times |access-date=October 15, 2010 |deadurl=yes |archiveurl=https://web.archive.org/web/20101013050948/http://www.globaltimes.cn/www/english/metro-beijing/update/business/2010-10/580763.html |archivedate=October 13, 2010 }}
149. ^Longstreth, Andrew [https://www.reuters.com/article/2011/03/11/us-china-vitaminc-idUSTRE72A4XH20110311 U.S. courts confront China's involvement in price fixing] {{webarchive |url=https://web.archive.org/web/20150924151706/http://www.reuters.com/article/2011/03/11/us-china-vitaminc-idUSTRE72A4XH20110311 |date=September 24, 2015 }}, Reuters.com, March 11, 2011; accessed July 22, 2017.
150. ^Vitamin C Makers Can Be Sued by Buyers Acting as Group, BusinessWeek.com, January 27, 2012; accessed January 2012 {{webarchive |url=https://web.archive.org/web/20130604184343/http://www.businessweek.com/news/2012-01-27/chinese-vitamin-c-makers-can-be-sued-by-buyers-acting-as-group.html |date=June 4, 2013 }}
151. ^[https://www.reuters.com/article/us-vitaminc-decision/china-vitamin-c-price-fixing-verdict-voided-by-u-s-appeals-court-idUSKCN11Q2IJ China Vitamin C price-fixing verdict voided by U.S. appeals court] Jonathan Stempel, Reuters, September 20, 2016.
152. ^[https://www.pbwt.com/antitrust-update-blog/international-comity-supreme-court-considers-vitamin-c-price-fixing-lawsuit Supreme Court Considers Vitamin C Price Fixing Lawsuit] Patterson Belknap Webb & Tyler LLP, June 29, 2017.
153. ^{{cite web |url=http://www3.sympatico.ca/goweezer/canada/z00cartier3.htm |title=Jacques Cartier's Second Voyage - 1535 - Winter & Scurvy |access-date=February 25, 2007 |deadurl=no |archiveurl=https://web.archive.org/web/20070212063742/http://www3.sympatico.ca/goweezer/canada/z00cartier3.htm |archivedate=February 12, 2007 |df=mdy-all }}
154. ^{{cite journal | vauthors = Martini E | title = Jacques Cartier witnesses a treatment for scurvy | journal = Vesalius | volume = 8 | issue = 1 | pages = 2–6 | date = June 2002 | pmid = 12422875 | doi = }}
155. ^{{cite web |first=Maciej |last=Cegłowski |url=http://idlewords.com/2010/03/scott_and_scurvy.htm |title=Scott and Scurvy |date=March 7, 2010 |ref=harv |postscript= |deadurl=no |archiveurl=https://web.archive.org/web/20100310051741/http://idlewords.com/2010/03/scott_and_scurvy.htm |archivedate=March 10, 2010 |df=mdy-all }}
156. ^As they sailed farther up the east coast of Africa, they met local traders, who traded them fresh oranges. Within six days of eating the oranges, da Gama's crew recovered fully and he noted, "It pleased God in his mercy that ... all our sick recovered their health for the air of the place is very good." Infantile Scurvy: A Historical Perspective {{webarchive |url=https://web.archive.org/web/20150904021206/http://pediatrics.aappublications.org/content/108/4/e76.full |date=September 4, 2015 }}, Kumaravel Rajakumar
157. ^On returning, Lopes' ship had left him on St Helena, where with admirable sagacity and industry he planted vegetables and nurseries with which passing ships were marvellously sustained. [...] There were 'wild groves' of oranges, lemons and other fruits that ripened all the year round, large pomegranates and figs. Santa Helena, A Forgotten Portuguese Discovery {{webarchive |url=https://web.archive.org/web/20110529065201/http://ler.letras.up.pt/uploads/ficheiros/4999.pdf |date=May 29, 2011 }}, Harold Livermore - Estudos em Homenagem a Luis Antonio de Oliveira Ramos, Faculdade de Letras da Universidade do Porto, 2004, pp. 630-631
158. ^John Woodall, The Surgions Mate … (London, England : Edward Griffin, 1617), p. 89. [https://archive.org/stream/surgionsmateortr00wood#page/89/mode/1up From page 89:] {{webarchive |url=https://web.archive.org/web/20160411083503/https://archive.org/stream/surgionsmateortr00wood |date=April 11, 2016 }} "Succus Limonum, or juice of Lemons … [is] the most precious help that ever was discovered against the Scurvy[;] to be drunk at all times; … "
159. ^{{Cite journal |author=Armstrong A |journal=British and Foreign Medico-chirurgical Review: Or, Quarterly Journal of Practical Medicine and Surgery |title=Observation on Naval Hygiene and Scurvy, more particularly as the later appeared during the Polar Voyage |volume=22 |pages=295–305 |year=1858 |url =https://books.google.com/?id=7VJYAAAAMAAJ&pg=PA295 }}
160. ^Johann Friedrich Bachstrom, Observationes circa scorbutum [Observations on scurvy] (Leiden ("Lugdunum Batavorum"), Netherlands: Conrad Wishof, 1734) p. 16. [https://books.google.com/books?id=bj8_AAAAcAAJ&pg=PA16#v=onepage&q&f=false From page 16:] {{webarchive |url=https://web.archive.org/web/20160101135046/https://books.google.com/books?id=bj8_AAAAcAAJ&pg=PA16 |date=January 1, 2016 }} " … sed ex nostra causa optime explicatur, quae est absentia, carentia & abstinentia a vegetabilibus recentibus, … " ( … but [this misfortune] is explained very well by our [supposed] cause, which is the absence of, lack of, and abstinence from fresh vegetables, … )
161. ^{{cite web |url=http://www.bbc.co.uk/history/british/empire_seapower/captaincook_scurvy_01.shtml |title=Captain Cook and the Scourge of Scurvy |publisher=BBC |work=British History in depth |author=Lamb J |date=February 17, 2011 |deadurl=no |archiveurl=https://web.archive.org/web/20110221073823/http://www.bbc.co.uk/history/british/empire_seapower/captaincook_scurvy_01.shtml |archivedate=February 21, 2011 |df=mdy-all }}
162. ^{{cite book | vauthors = Lamb J |title=Preserving the self in the south seas, 1680–1840 |publisher=University of Chicago Press |year=2001 |page=117 |isbn=978-0-226-46849-5 |url=https://books.google.com/books?id=hSoj1DR4ZSMC&pg=&dq#v=onepage&q=&f=false |deadurl=no |archiveurl=https://web.archive.org/web/20160430065803/https://books.google.com/books?id=hSoj1DR4ZSMC&pg=&dq#v=onepage&q=&f=false |archivedate=April 30, 2016 |df=mdy-all }}
163. ^{{cite journal | vauthors = Baron JH | title = Sailors' scurvy before and after James Lind--a reassessment | journal = Nutrition Reviews | volume = 67 | issue = 6 | pages = 315–32 | date = June 2009 | pmid = 19519673 | doi = 10.1111/j.1753-4887.2009.00205.x | url = https://pdfs.semanticscholar.org/123e/bc0bd57683f8d8cfa0bee98a016fc5f2f37b.pdf }}
164. ^{{cite book | vauthors = Lind J |title=A Treatise of the Scurvy |publisher=A. Millar |location=London |year=1753 }} In the 1757 edition of his work, Lind discusses his experiment starting on [https://archive.org/stream/treatiseonscurvy00lind#page/149/mode/1up page 149.] {{webarchive |url=https://web.archive.org/web/20160320155753/https://archive.org/stream/treatiseonscurvy00lind |date=March 20, 2016 }}
165. ^{{cite book | vauthors = Singh S, Ernst E | author-link1 = Simon Singh | author-link2 = Edzard Ernst | title = Trick or Treatment: The Undeniable Facts about Alternative Medicine |publisher=WW Norton & Company |year=2008 |pages=15–18 |isbn=978-0-393-06661-6 }}
166. ^{{cite book |vauthors=Beaglehole JH, Cook JD, Edwards PR |title=The journals of Captain Cook |publisher=Penguin |location=Harmondsworth [Eng.] |year=1999 |pages= |isbn=978-0-14-043647-1 }}
167. ^{{cite book |vauthors=Reeve J, Stevens DA |title=Navy and the Nation: The Influence of the Navy on Modern Australia |publisher=Allen & Unwin Academic |location= |year=2006 |page=74 |isbn=978-1-74114-200-6 |oclc= |doi= |chapterurl=https://books.google.com/?id=BGs6__kbqKIC&pg=PA74 |chapter=Cook's Voyages 1768–1780 }}
168. ^{{cite journal | vauthors = Kuhnlein HV, Receveur O, Soueida R, Egeland GM | title = Arctic indigenous peoples experience the nutrition transition with changing dietary patterns and obesity | journal = The Journal of Nutrition | volume = 134 | issue = 6 | pages = 1447–53 | date = June 2004 | pmid = 15173410 | doi = 10.1093/jn/134.6.1447| url = http://jn.nutrition.org/cgi/content/full/134/6/1447 | archiveurl = https://web.archive.org/web/20100317083119/http://jn.nutrition.org/cgi/content/full/134/6/1447 | df = mdy-all | deadurl = no | archivedate = March 17, 2010 }}
169. ^{{cite journal |last1=Szent-Györgyi |first1=Albert |date= June 1963|title= Lost in the Twentieth Century|journal=Annual Review of Biochemistry |volume=32 |issue=1 |pages=1–15 |doi=10.1146/annurev.bi.32.070163.000245|pmid=14140702 }}
170. ^{{cite book |last1=Squires |first1=Victor R. | name-list-format = vanc |title=The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition - Volume IV |date=2011 |publisher=EOLSS Publications |isbn=9781848261952 |page=121 |url=https://books.google.com/books?id=VJWoCwAAQBAJ&pg=PA121}}
171. ^{{cite book | vauthors = Stacey M, Manners DJ | title = Edmund Langley Hirst. 1898-1975 | volume = 35 | issue = | pages = 1–29 | year = 1978 | pmid = 356548 | doi = 10.1016/S0065-2318(08)60217-6 | isbn = 9780120072354 | series = Advances in Carbohydrate Chemistry and Biochemistry }}
172. ^{{cite web |url=http://www.trademarkia.com/redoxon-71350953.html |title=Redoxon trademark information by Hoffman-la Roche, Inc. (1934)|access-date=December 25, 2017}}
173. ^{{cite book | chapter-url = https://books.google.com/books?id=WgamCgAAQBAJ&pg=PA161 | chapter = Industrial fermentation of Vitamin C | vauthors = Wang W, Xu H | year = 2016 | page = 161 | title = Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants | veditors = Vandamme EJ, Revuelta JI | publisher = Wiley-VCH Verlag GmbH & Co. KGaA. | isbn = 9783527337347 }}
174. ^{{cite journal | vauthors = Norum KR, Grav HJ | title = [Axel Holst and Theodor Frolich--pioneers in the combat of scurvy] | language = Norwegian | journal = Tidsskrift for den Norske Laegeforening | volume = 122 | issue = 17 | pages = 1686–7 | date = June 2002 | pmid = 12555613 }}
175. ^{{cite journal | vauthors = Rosenfeld L | title = Vitamine--vitamin. The early years of discovery | journal = Clinical Chemistry | volume = 43 | issue = 4 | pages = 680–5 | date = April 1997 | pmid = 9105273 }}
176. ^{{cite journal | vauthors = Svirbely JL, Szent-Györgyi A | title = The chemical nature of vitamin C | journal = The Biochemical Journal | volume = 26 | issue = 3 | pages = 865–70 | year = 1932 | pmid = 16744896 | pmc = 1260981 | doi = 10.1126/science.75.1944.357-a | bibcode = 1932Sci....75..357K }}
177. ^{{cite journal | vauthors = Juhász-Nagy S | title = [Albert Szent-Györgyi--biography of a free genius] | language = Hungarian | journal = Orvosi Hetilap | volume = 143 | issue = 12 | pages = 611–4 | date = March 2002 | pmid = 11963399 }}
178. ^{{cite journal | vauthors = Kenéz J | title = [Eventful life of a scientist. 80th birthday of Nobel prize winner Albert Szent-Györgyi] | language = German | journal = Munchener Medizinische Wochenschrift | volume = 115 | issue = 51 | pages = 2324–6 | date = December 1973 | pmid = 4589872 | doi = }}
179. ^{{cite journal | vauthors = Szállási A | title = [2 interesting early articles by Albert Szent-Györgyi] | language = Hungarian | journal = Orvosi Hetilap | volume = 115 | issue = 52 | pages = 3118–9 | date = December 1974 | pmid = 4612454 | doi = }}
180. ^{{cite web |url=http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |title=The Albert Szent-Gyorgyi Papers: Szeged, 1931-1947: Vitamin C, Muscles, and WWII |work=Profiles in Science |publisher=United States National Library of Medicine |deadurl=no |archiveurl=https://web.archive.org/web/20090505232208/http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |archivedate=May 5, 2009 |df=mdy-all }}
181. ^{{cite web |url=http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |title=The Albert Szent-Gyorgyi Papers: Szeged, 1931-1947: Vitamin C, Muscles, and WWII |work=Profiles in Science |publisher=United States National Library of Medicine |deadurl=no |archiveurl=https://web.archive.org/web/20090505232208/http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |archivedate=May 5, 2009 |df=mdy-all }}
182. ^{{cite web |url=https://www.etymonline.com/word/scurvy |title=Scurvy |publisher=Online Entymology Dictionary |access-date=November 19, 2017}}
183. ^{{cite web |title=The Nobel Prize in Physiology or Medicine 1937 |url=https://www.nobelprize.org/nobel_prizes/medicine/laureates/1937 |publisher=Nobel Media AB |access-date=November 20, 2014 |deadurl=no |archiveurl=https://web.archive.org/web/20141105153327/http://www.nobelprize.org/nobel_prizes/medicine/laureates/1937/ |archivedate=November 5, 2014 |df=mdy-all}}
184. ^{{cite journal | vauthors = Burns JJ, Evans C | title = The synthesis of L-ascorbic acid in the rat from D-glucuronolactone and L-gulonolactone | journal = The Journal of Biological Chemistry | volume = 223 | issue = 2 | pages = 897–905 | date = December 1956 | pmid = 13385237 | url = http://www.jbc.org/cgi/pmidlookup?view=long&pmid=13385237 }}
185. ^{{cite journal | vauthors = Burns JJ, Moltz A, Peyser P | title = Missing step in guinea pigs required for the biosynthesis of L-ascorbic acid | journal = Science | volume = 124 | issue = 3232 | pages = 1148–9 | date = December 1956 | pmid = 13380431 | doi = 10.1126/science.124.3232.1148-a | bibcode = 1956Sci...124.1148B }}
186. ^{{cite journal | vauthors = Henson DE, Block G, Levine M | title = Ascorbic acid: biologic functions and relation to cancer | journal = Journal of the National Cancer Institute | volume = 83 | issue = 8 | pages = 547–50 | date = April 1991 | pmid = 1672383 | doi = 10.1093/jnci/83.8.547 }}
187. ^{{cite journal | vauthors = Pauling L | title = Evolution and the need for ascorbic acid | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 67 | issue = 4 | pages = 1643–8 | date = December 1970 | pmid = 5275366 | pmc = 283405 | doi = 10.1073/pnas.67.4.1643 | bibcode = 1970PNAS...67.1643P }}
188. ^{{cite journal | vauthors = Mandl J, Szarka A, Bánhegyi G | title = Vitamin C: update on physiology and pharmacology | journal = British Journal of Pharmacology | volume = 157 | issue = 7 | pages = 1097–110 | date = August 2009 | pmid = 19508394 | pmc = 2743829 | doi = 10.1111/j.1476-5381.2009.00282.x }}
189. ^{{cite journal | vauthors = Cameron E, Pauling L | title = Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 73 | issue = 10 | pages = 3685–9 | date = October 1976 | pmid = 1068480 | pmc = 431183 | doi = 10.1073/pnas.73.10.3685| bibcode = 1976PNAS...73.3685C }}
190. ^{{cite web|url=http://lpi.oregonstate.edu/mic/vitamins/vitamin-C#common-cold-treatment|title=Vitamin C: Common cold|publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University|access-date=May 3, 2017|location=Corvallis, OR|date=January 14, 2014}}
191. ^{{Cite book | doi=10.1007/978-3-7643-9912-2_13|chapter = Vitamins and minerals|title = Commond Cold| pages=275–307|year = 2009|last1 = Hemilä|first1 = Harri| isbn=978-3-7643-9894-1}}
192. ^{{cite web |url=http://www.swissinfo.ch/eng/Specials/International_year_of_chemistry/Background/Let_the_chemical_games_begin!.html?cid=29513206 |title=Let the chemical games begin! |access-date=February 23, 2011 |author=Stephens T |date=February 17, 2011 |work=Swiss Info |publisher=Swiss Broadcasting Corporation |deadurl=no |archiveurl=https://web.archive.org/web/20110831222401/http://www.swissinfo.ch/eng/Specials/International_year_of_chemistry/Background/Let_the_chemical_games_begin!.html?cid=29513206 |archivedate=August 31, 2011 |df=mdy-all }}
193. ^{{cite web|author=British Pharmacopoeia Commission Secretariat |title=Index, BP 2009 |year=2009 |url=http://www.pharmacopoeia.co.uk/pdf/2009_index.pdf |accessdate=2010-02-04 |deadurl=yes |archiveurl=https://web.archive.org/web/20090411071437/http://www.pharmacopoeia.co.uk/pdf/2009_index.pdf |archivedate=2009-04-11 |df= }}
194. ^{{cite web|title=Japanese Pharmacopoeia, Fifteenth Edition |year=2006 |url=http://jpdb.nihs.go.jp/jp15e/JP15.pdf |accessdate=2010-02-04 |deadurl=yes |archiveurl=https://web.archive.org/web/20110722105441/http://jpdb.nihs.go.jp/jp15e/JP15.pdf |archivedate=2011-07-22 |df= }}

External links

  • Vitamin C Fact Sheet from the U.S. National Institutes of Health
{{Portal bar|Food |Health and fitness|Medicine|Pharmacy and Pharmacology}}{{Commons category|Ascorbic acid}}{{wiktionary}}{{Vitamins}}

14 : Vitamin C|Vitamins|Food antioxidants|Dietary antioxidants|Orthomolecular medicine|Organic acids|Coenzymes|Furanones|Dihydrofurans|Alcohols|Biomolecules|World Health Organization essential medicines|RTT|E-number additives

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 11:41:07