词条 | Bundle of principal parts |
释义 |
In algebraic geometry, given a line bundle L on a smooth variety X, the bundle of n-th order principal parts of L is a vector bundle of rank n + 1 that, roughly, parametrizes n-th order Taylor expansions of sections of L. Precisely, let I be the ideal sheaf defining the diagonal embedding and the restrictions of projections to . Then the bundle of n-th order principal parts is[1] Then and there is a natural exact sequence of vector bundles[2] where is the sheaf of differential one-forms on X. See also
References1. ^{{harvnb|Fulton|loc=Example 2.5.6.}} 2. ^{{harvnb|SGA 6|loc=Exp II, Appendix II 1.2.4.}}
| editor-last = Berthelot | editor-first = Pierre | editor-link = Pierre Berthelot (mathematician) | editor2=Alexandre Grothendieck | editor3=Luc Illusie | title = Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225) | year = 1971 | publisher = Springer-Verlag | location = Berlin; New York | language = French | pages = xii+700 | nopp = true |doi=10.1007/BFb0066283 |isbn= 978-3-540-05647-8 | mr = 0354655 }}{{algebraic-geometry-stub}} 1 : Algebraic geometry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。