请输入您要查询的百科知识:

 

词条 Circulating free DNA
释义

  1. History

  2. Methods

      Collection and purification    Analysis of cfDNA in Plasma    PCR    Massively Parallel Sequencing  

  3. cfDNA and Illness

      Cancer    Trauma    Sepsis    Myocardial Infraction    Transplant Graft Rejection  

  4. References

{{Orphan|date=July 2016}}Circulating free DNA (cfDNA) are degraded DNA fragments released to the blood plasma. cfDNA can be used to describe various forms of DNA freely circulating the bloodstream, including circulating tumor DNA (ctDNA) and cell-free fetal DNA (cffDNA). Elevated levels of cfDNA are observed in cancer, especially in advanced disease.[1] There is evidence that cfDNA becomes increasingly frequent in circulation with the onset of age.[2] cfDNA has been shown to be a useful biomarker for a multitude of ailments other than cancer and fetal medicine. This includes but is not limited to trauma, sepsis, aseptic inflammation, myocardial infarction, stroke, transplantation, diabetes, and sickle cell disease.[3]

History

Circulated cell-free DNA was first discovered by Mandel and Metais in 1948.[4] It was later discovered that the level of cfDNA is significantly increased in the plasma of diseased patients. This discovery was first made in Lupus patients[5] and later it was determined that the levels of cfDNA are elevated in over half of cancer patients.[6] This increase in cfDNA in cancer patients has been shown to be due to circulating tumor cells (CTC) traveling in the peripheral blood. The ability to extract circulating tumor DNA (ctDNA) from the human plasma has led to huge advancements in noninvasive cancer detection.[7] Most notably, it has led to what is now known as Liquid Biopsy. In short, liquid biopsy is using biomarkers and cancer cells in the blood as a means of diagnosing cancer type and stage.[8] This type of biopsy is noninvasive and allows for the routine clinical screening that is important in determining cancer relapse after initial treatment.[9]

Methods

Collection and purification

cfDNA purification is prone to contamination due to ruptured blood cells during the purification process.[10] Because of this, different purification methods can lead to significantly different cfDNA extraction yields.[11][12] At the moment, typical purification methods involve collection of blood via venipuncture, centrifugation to pellet the cells, and extraction of cfDNA from the plasma. The specific method for extraction of cfDNA from the plasma depends on the protocol desired.[13]

Analysis of cfDNA in Plasma

PCR

In general, the detection of specific DNA sequences in cfDNA can be done by two means; sequence specific detection (PCR based) and general genomic analysis of all cfDNA present in the blood (DNA sequencing).[14] The presence of cfDNA containing DNA from tumor cells was originally characterized using PCR amplification of mutated genes from extracted cfDNA.[15] PCR based analysis of cfDNA typically rely on the analytical nature of qPCR and digital PCR. Both of these techniques can detect down to a single targeted molecule present in a sample. For this reason the PCR based method of detection is still very prominent tool in cfDNA detection. This method has the limitation of not being able to detect larger structural variant present in ctDNA and for this reason massively parallel next generation sequencing is also used to determine ctDNA content in cfDNA

Massively Parallel Sequencing

Massively parallel sequencing (MPS) has allowed the deep sequencing of cfDNA. this deep sequencing is required to detect ctDNA present in low concentrations in the plasma. Two main sequencing techniques are typically used for analysis of cfDNA; PCR amplicon sequencing[16] and hybrid capture sequencing.[17]

cfDNA and Illness

Cancer

The majority of cfDNA research is focused on DNA originating from circulating tumor cells (ctDNA). In short, the DNA from circulating tumor cells gets released by means that are not fully understood.[18]

Trauma

Elevated cfDNA has been detected with acute blunt trauma[19] and burn victims.[20] In both of these cases cfDNA concentration in the plasma were correlated to the severity of the injury, as well as outcome of the patient.

Sepsis

It has been shown that an increase cfDNA in the plasma of ICU patients is an indicator of the onset of sepsis.[21][22] Due to the severity of sepsis in ICU patients, further testing in order to determine the scope of cfDNA efficacy as a biomarker for septic risk is likely.[3]

Myocardial Infraction

Patients showing signs of myocardial infraction have been shown to have elevated cfDNA levels.[23] This elevation correlates to patient outcome in terms of additional cardiac issues and even mortality within two years.[24]

Transplant Graft Rejection

Foreign cfDNA has been shown to be present in the plasma of solid organ transplant patients. This cfDNA is derived from the grafted organ and is termed GcfDNA. GcfDNA values spike initially after a transplant procedure (>5%) and typically drop down (<0.5%) within one week.[25] If the host body rejects the grafted organ the GcfDNA concentration in the blood will rise to a level greater than 5-fold higher than those without complications. This increase in GcfDNA can be detected prior to any other clinical or biochemical signs of complication.[25]

References

1. ^{{cite journal |title=Circulating free DNA in the management of breast cancer |pmc=4200656 | pmid=25332979 |doi=10.3978/j.issn.2305-5839.2013.06.06 |volume=2 |issue=1 |year=2014 |journal=Ann Transl Med |pages=3 | last1 = Shaw | first1 = JA | last2 = Stebbing | first2 = J}}
2. ^{{cite journal |title=The dark side of circulating nucleic acids |journal= Aging Cell|volume= 15|issue= 3|pages= 398–399|doi=10.1111/acel.12454|pmid= 26910468|pmc= 4854914|year = 2016|last1 = Gravina|first1 = Silvia|last2= Sedivy|first2= John M.|last3= Vijg|first3= Jan}}
3. ^{{Cite journal|last=Butt|first=Asif N.|last2=Swaminathan|first2=R.|date=August 2008|title=Overview of Circulating Nucleic Acids in Plasma/Serum|journal=Annals of the New York Academy of Sciences|volume=1137|issue=1|pages=236–242|doi=10.1196/annals.1448.002|pmid=18837954|issn=0077-8923}}
4. ^{{Cite journal|last=Mandel|first=P.|last2=Metais|first2=P.|date=February 1948|title=[Not Available]|journal=Comptes Rendus des Séances de la Société de Biologie et de ses Filiales|volume=142|issue=3–4|pages=241–243|issn=0037-9026|pmid=18875018}}
5. ^{{Cite journal|last=Tan|first=E M|last2=Schur|first2=P H|last3=Carr|first3=R I|last4=Kunkel|first4=H G|date=1966-11-01|title=Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus.|journal=Journal of Clinical Investigation|volume=45|issue=11|pages=1732–1740|doi=10.1172/jci105479|pmid=4959277|pmc=292857|issn=0021-9738}}
6. ^{{Cite journal|last=Leon|first=S. A.|last2=Shapiro|first2=B.|last3=Sklaroff|first3=D. M.|last4=Yaros|first4=M. J.|date=March 1977|title=Free DNA in the serum of cancer patients and the effect of therapy|journal=Cancer Research|volume=37|issue=3|pages=646–650|issn=0008-5472|pmid=837366}}
7. ^{{Cite journal|last=Sorenson|first=G. D.|last2=Pribish|first2=D. M.|last3=Valone|first3=F. H.|last4=Memoli|first4=V. A.|last5=Bzik|first5=D. J.|last6=Yao|first6=S. L.|date=January 1994|title=Soluble normal and mutated DNA sequences from single-copy genes in human blood|journal=Cancer Epidemiology, Biomarkers & Prevention|volume=3|issue=1|pages=67–71|issn=1055-9965|pmid=8118388}}
8. ^{{Cite journal|last=Arneth|first=Borros|date=2018-05-04|title=Update on the types and usage of liquid biopsies in the clinical setting: a systematic review|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935950/|journal=BMC Cancer|volume=18|issue=1|pages=527|doi=10.1186/s12885-018-4433-3|issn=1471-2407|pmc=5935950|pmid=29728089}}
9. ^{{Cite journal|last=Babayan|first=Anna|last2=Pantel|first2=Klaus|date=2018-03-20|title=Advances in liquid biopsy approaches for early detection and monitoring of cancer|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861602/|journal=Genome Medicine|volume=10|issue=1|pages=21|doi=10.1186/s13073-018-0533-6|issn=1756-994X|pmc=5861602|pmid=29558971}}
10. ^{{Cite journal|last=Lui|first=Yanni Y. N.|last2=Chik|first2=Ki-Wai|last3=Chiu|first3=Rossa W. K.|last4=Ho|first4=Cheong-Yip|last5=Lam|first5=Christopher W. K.|last6=Lo|first6=Y. M. Dennis|date=March 2002|title=Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation|journal=Clinical Chemistry|volume=48|issue=3|pages=421–427|issn=0009-9147|pmid=11861434}}
11. ^{{Cite journal|last=Page|first=Karen|last2=Guttery|first2=David S.|last3=Zahra|first3=Nathalie|last4=Primrose|first4=Lindsay|last5=Elshaw|first5=Shona R.|last6=Pringle|first6=J. Howard|last7=Blighe|first7=Kevin|last8=Marchese|first8=Stephanie D.|last9=Hills|first9=Allison|date=2013-10-18|title=Influence of Plasma Processing on Recovery and Analysis of Circulating Nucleic Acids|journal=PLoS ONE|language=en|volume=8|issue=10|pages=e77963|doi=10.1371/journal.pone.0077963|issn=1932-6203|pmc=3799744|pmid=24205045}}
12. ^{{Cite journal|last=Barták|first=Barbara Kinga|last2=Kalmár|first2=Alexandra|last3=Galamb|first3=Orsolya|last4=Wichmann|first4=Barnabás|last5=Nagy|first5=Zsófia Brigitta|last6=Tulassay|first6=Zsolt|last7=Dank|first7=Magdolna|last8=Igaz|first8=Péter|last9=Molnár|first9=Béla|date=2018-01-27|title=Blood Collection and Cell-Free DNA Isolation Methods Influence the Sensitivity of Liquid Biopsy Analysis for Colorectal Cancer Detection|journal=Pathology & Oncology Research|language=en|doi=10.1007/s12253-018-0382-z|pmid=29374860|issn=1219-4956}}
13. ^{{Cite journal|last=Pérez-Barrios|first=Clara|last2=Nieto-Alcolado|first2=Irene|last3=Torrente|first3=María|last4=Jiménez-Sánchez|first4=Carolina|last5=Calvo|first5=Virginia|last6=Gutierrez-Sanz|first6=Lourdes|last7=Palka|first7=Magda|last8=Donoso-Navarro|first8=Encarnación|last9=Provencio|first9=Mariano|date=December 2016|title=Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233878/|journal=Translational Lung Cancer Research|volume=5|issue=6|pages=665–672|doi=10.21037/tlcr.2016.12.03|issn=2218-6751|pmc=5233878|pmid=28149760}}
14. ^{{Cite journal|last=Volik|first=Stanislav|last2=Alcaide|first2=Miguel|last3=Morin|first3=Ryan D.|last4=Collins|first4=Colin|date=2016-10-01|title=Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies|url=http://mcr.aacrjournals.org/content/14/10/898|journal=Molecular Cancer Research|language=en|volume=14|issue=10|pages=898–908|doi=10.1158/1541-7786.MCR-16-0044|issn=1541-7786|pmid=27422709}}
15. ^{{Cite journal|last=Vasioukhin|first=V.|last2=Anker|first2=P.|last3=Maurice|first3=P.|last4=Lyautey|first4=J.|last5=Lederrey|first5=C.|last6=Stroun|first6=M.|date=April 1994|title=Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia|journal=British Journal of Haematology|volume=86|issue=4|pages=774–779|issn=0007-1048|pmid=7918071}}
16. ^{{Cite journal|last=Forshew|first=Tim|last2=Murtaza|first2=Muhammed|last3=Parkinson|first3=Christine|last4=Gale|first4=Davina|last5=Tsui|first5=Dana W. Y.|last6=Kaper|first6=Fiona|last7=Dawson|first7=Sarah-Jane|last8=Piskorz|first8=Anna M.|last9=Jimenez-Linan|first9=Mercedes|date=2012-05-30|title=Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA|url=http://stm.sciencemag.org/content/4/136/136ra68|journal=Science Translational Medicine|language=en|volume=4|issue=136|pages=136ra68|doi=10.1126/scitranslmed.3003726|issn=1946-6234|pmid=22649089}}
17. ^{{Cite journal|last=Newman|first=Aaron M.|last2=Bratman|first2=Scott V.|last3=To|first3=Jacqueline|last4=Wynne|first4=Jacob F.|last5=Eclov|first5=Neville C. W.|last6=Modlin|first6=Leslie A.|last7=Liu|first7=Chih Long|last8=Neal|first8=Joel W.|last9=Wakelee|first9=Heather A.|date=May 2014|title=An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage|journal=Nature Medicine|volume=20|issue=5|pages=548–554|doi=10.1038/nm.3519|issn=1546-170X|pmc=4016134|pmid=24705333}}
18. ^{{Cite journal|last=Schwarzenbach|first=Heidi|last2=Hoon|first2=Dave S. B.|last3=Pantel|first3=Klaus|date=June 2011|title=Cell-free nucleic acids as biomarkers in cancer patients|journal=Nature Reviews. Cancer|volume=11|issue=6|pages=426–437|doi=10.1038/nrc3066|issn=1474-1768|pmid=21562580}}
19. ^{{Cite journal|last=Lo|first=Y. M.|last2=Rainer|first2=T. H.|last3=Chan|first3=L. Y.|last4=Hjelm|first4=N. M.|last5=Cocks|first5=R. A.|date=March 2000|title=Plasma DNA as a prognostic marker in trauma patients|journal=Clinical Chemistry|volume=46|issue=3|pages=319–323|issn=0009-9147|pmid=10702517}}
20. ^{{Cite journal|last=Chiu|first=Tor W.|last2=Young|first2=Richard|last3=Chan|first3=Lisa Y. S.|last4=Burd|first4=Andrew|last5=Lo|first5=Dennis Y. M.|date=2006|title=Plasma cell-free DNA as an indicator of severity of injury in burn patients|journal=Clinical Chemistry and Laboratory Medicine|volume=44|issue=1|pages=13–17|doi=10.1515/CCLM.2006.003|issn=1434-6621|pmid=16375578}}
21. ^{{Cite journal|last=Rhodes|first=Andrew|last2=Wort|first2=Stephen J.|last3=Thomas|first3=Helen|last4=Collinson|first4=Paul|last5=Bennett|first5=E. David|date=2006|title=Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients|journal=Critical Care (London, England)|volume=10|issue=2|pages=R60|doi=10.1186/cc4894|issn=1466-609X|pmc=1550922|pmid=16613611}}
22. ^{{Cite journal|last=Martins|first=G. A.|last2=Kawamura|first2=M. T.|last3=Carvalho|first3=M. da G.|date=April 2000|title=Detection of DNA in the plasma of septic patients|journal=Annals of the New York Academy of Sciences|volume=906|pages=134–140|issn=0077-8923|pmid=10818609}}
23. ^{{Cite journal|last=Chang|first=Christine P.-Y.|last2=Chia|first2=Rhu-Hsin|last3=Wu|first3=Tsu-Lan|last4=Tsao|first4=Kuo-Chien|last5=Sun|first5=Chien-Feng|last6=Wu|first6=James T.|date=January 2003|title=Elevated cell-free serum DNA detected in patients with myocardial infarction|journal=Clinica Chimica Acta; International Journal of Clinical Chemistry|volume=327|issue=1–2|pages=95–101|issn=0009-8981|pmid=12482623}}
24. ^{{Cite journal|last=Rainer|first=Timothy H.|last2=Lam|first2=Nicole Y. L.|last3=Man|first3=C. Y.|last4=Chiu|first4=Rossa W. K.|last5=Woo|first5=K. S.|last6=Lo|first6=Y. M. Dennis|date=June 2006|title=Plasma beta-globin DNA as a prognostic marker in chest pain patients|journal=Clinica Chimica Acta; International Journal of Clinical Chemistry|volume=368|issue=1–2|pages=110–113|doi=10.1016/j.cca.2005.12.021|issn=0009-8981|pmid=16480967}}
25. ^{{Cite journal|last=Beck|first=J.|last2=Oellerich|first2=M.|last3=Schulz|first3=U.|last4=Schauerte|first4=V.|last5=Reinhard|first5=L.|last6=Fuchs|first6=U.|last7=Knabbe|first7=C.|last8=Zittermann|first8=A.|last9=Olbricht|first9=C.|date=October 2015|title=Donor-Derived Cell-Free DNA Is a Novel Universal Biomarker for Allograft Rejection in Solid Organ Transplantation|journal=Transplantation Proceedings|volume=47|issue=8|pages=2400–2403|doi=10.1016/j.transproceed.2015.08.035|pmid=26518940|issn=0041-1345}}

1 : DNA

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 19:53:19