请输入您要查询的百科知识:

 

词条 Cobalt(II)–porphyrin catalysis
释义

  1. Attributes

      Application  

  2. References

{{Multiple issues|{{incomprehensible|date=April 2017}}{{technical|date=April 2017}}{{Orphan|date=April 2017}}{{primary sources|date=May 2017}}{{Underlinked|date=May 2017}}
}}Cobalt(II)–porphyrin catalysis is a one-electron catalytic approach for homolytic radical chemistry[1] based on structurally well-defined Co(II) complexes. Due to their distinctive radical mechanisms that involve metal-stabilized radical intermediates, such as α-metalloalkyl radicals, α-metalloaminyl radicals, and α-metalloxyl radicals, the Co(II)–porphyrin-based catalysis system addresses some long-standing challenges in organic transformations.[2][3]

A family of unique D2-symmetric chiral porphyrins are effective in a range of stereodefined transformations.[4]

Attributes

Co(II)–porphyrin catalysts has good thermal and metal coordination stability resulting from the macrocyclic chelation effect of the aromatic ligand. Once inserted into the macrocyclic ring, dissociation of the metal ion is exceedingly difficult, under most reaction conditions, leading to increased catalyst lifetime . Metal ion contamination is a practical issue for many metal-catalyzed processes, and is especially important for pharmaceutical application.

Co(II)–porphyrin catalysts lack vacant cis-coordination sites available (all occupied). This unique metal coordination mode can prevent a number of possible side reactions associated with cis-coordination, and results in a more effective and selective catalytic process. Although cis-coordination is requisite for many catalytic processes, it is not required for catalytic cyclopropanation/aziridnation or atom/group transfer reactions.

Third, it has been well documented that the physical and chemical properties of a porphyrin complex of a given metal ion can be systematically tuned by introducing peripheral substituents with varied electronic, steric, and conformational environments on the aromatic ring structure of the porphyrin ligand. X. Peter Zhang’s group have accomplished porphyrin modification by using palladium-catalyzed coupling processes of chiral amides on bromoporphyrin templates.

Together, these advantages provide Co(II)–porphyrin catalysts with high catalytic selectivities and turnover numbers.[5]

Application

Stable metalloradicals such as Co–porphyrin catalysis activate diazo reagents and organic azides to generate C- and N-centered radicals, respectively, with nitrogen as the only byproduct in a controlled and catalytic manner. The initially formed C- and N-centered radicals can undergo common radical reactions such as radical addition and atom abstraction, but with effective control of reactivity and stereoselectivity by the porphyrin ligand environment.[6][7][8][9][10][11][12][13][14][15][16][17][18]

{{-}}

References

1. ^{{Cite journal|last=Studer|first=Armido|last2=Curran|first2=Dennis P.|date=2016-01-04|title=Catalysis of Radical Reactions: A Radical Chemistry Perspective|journal=Angewandte Chemie International Edition|language=en|volume=55|issue=1|pages=58–102|doi=10.1002/anie.201505090|pmid=26459814|issn=1521-3773}}
2. ^{{Cite journal|last=Degennaro|first=Leonardo|last2=Trinchera|first2=Piera|last3=Luisi|first3=Renzo|date=2014-08-27|title=Recent Advances in the Stereoselective Synthesis of Aziridines|journal=Chemical Reviews|volume=114|issue=16|pages=7881–7929|doi=10.1021/cr400553c|issn=0009-2665}}
3. ^{{Cite journal|last=Pellissier|first=Hélène|last2=Clavier|first2=Hervé|date=2014-03-12|title=Enantioselective Cobalt-Catalyzed Transformations|journal=Chemical Reviews|volume=114|issue=5|pages=2775–2823|doi=10.1021/cr4004055|issn=0009-2665}}
4. ^{{Cite journal|last=Doyle|first=Michael P.|date=2009-01-19|title=Exceptional Selectivity in Cyclopropanation Reactions Catalyzed by Chiral Cobalt(II)–Porphyrin Catalysts|journal=Angewandte Chemie International Edition|language=en|volume=48|issue=5|pages=850–852|doi=10.1002/anie.200804940|issn=1521-3773|pmc=3517106|pmid=19117005}}
5. ^{{Cite journal|last=Lu|first=Hongjian|last2=Zhang|first2=X. Peter|date=2011-03-21|title=Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions|url=http://pubs.rsc.org/en/Content/ArticleLanding/2011/CS/C0CS00070A#!divAbstract|journal=Chemical Society Reviews|language=en|volume=40|issue=4|pages=1899–1909|doi=10.1039/C0CS00070A|issn=1460-4744}}
6. ^{{Cite journal|last=Lu|first=Hongjian|last2=Dzik|first2=Wojciech I.|last3=Xu|first3=Xue|last4=Wojtas|first4=Lukasz|last5=de Bruin|first5=Bas|last6=Zhang|first6=X. Peter|date=2011-06-08|title=Experimental Evidence for Cobalt(III)-Carbene Radicals: Key Intermediates in Cobalt(II)-Based Metalloradical Cyclopropanation|journal=Journal of the American Chemical Society|volume=133|issue=22|pages=8518–8521|doi=10.1021/ja203434c|issn=0002-7863}}
7. ^{{Cite journal|last=Belof|first=Jonathan L.|last2=Cioce|first2=Christian R.|last3=Xu|first3=Xue|last4=Zhang|first4=X. Peter|last5=Space|first5=Brian|last6=Woodcock|first6=H. Lee|date=2011-05-23|title=Characterization of Tunable Radical Metal–Carbenes: Key Intermediates in Catalytic Cyclopropanation|journal=Organometallics|volume=30|issue=10|pages=2739–2746|doi=10.1021/om2001348|issn=0276-7333|pmc=3105361|pmid=21643517}}
8. ^{{Cite journal|last=Dzik|first=Wojciech I.|last2=Xu|first2=Xue|last3=Zhang|first3=X. Peter|last4=Reek|first4=Joost N. H.|last5=de Bruin|first5=Bas|date=2010-08-11|title='Carbene Radicals' in CoII(por)-Catalyzed Olefin Cyclopropanation|journal=Journal of the American Chemical Society|volume=132|issue=31|pages=10891–10902|doi=10.1021/ja103768r|issn=0002-7863}}
9. ^{{Cite journal|last=Dzik|first=Wojciech I.|last2=Xu|first2=Xue|last3=Zhang|first3=X. Peter|last4=Reek|first4=Joost N. H.|last5=de Bruin|first5=Bas|date=2010-08-11|title='Carbene Radicals' in CoII(por)-Catalyzed Olefin Cyclopropanation|journal=Journal of the American Chemical Society|volume=132|issue=31|pages=10891–10902|doi=10.1021/ja103768r|issn=0002-7863}}
10. ^{{Cite journal|last=Wang|first=Yong|last2=Wen|first2=Xin|last3=Cui|first3=Xin|last4=Wojtas|first4=Lukasz|last5=Zhang|first5=X. Peter|date=2017-01-25|title=Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis|journal=Journal of the American Chemical Society|volume=139|issue=3|pages=1049–1052|doi=10.1021/jacs.6b11336|issn=0002-7863|pmc=5266645|pmid=28051870}}
11. ^{{Cite journal|last=Xu|first=Xue|last2=Zhu|first2=Shifa|last3=Cui|first3=Xin|last4=Wojtas|first4=Lukasz|last5=Zhang|first5=X. Peter|date=2013-11-04|title=Cobalt(II)-Catalyzed Asymmetric Olefin Cyclopropanation with α-Ketodiazoacetates|journal=Angewandte Chemie International Edition|language=en|volume=52|issue=45|pages=11857–11861|doi=10.1002/anie.201305883|issn=1521-3773|pmc=3943748|pmid=24115575}}
12. ^{{Cite journal|last=Xu|first=Xue|last2=Lu|first2=Hongjian|last3=Ruppel|first3=Joshua V.|last4=Cui|first4=Xin|last5=Lopez de Mesa|first5=Silke|last6=Wojtas|first6=Lukasz|last7=Zhang|first7=X. Peter|date=2011-10-05|title=Highly Asymmetric Intramolecular Cyclopropanation of Acceptor-Substituted Diazoacetates by Co(II)-Based Metalloradical Catalysis: Iterative Approach for Development of New-Generation Catalysts|journal=Journal of the American Chemical Society|volume=133|issue=39|pages=15292–15295|doi=10.1021/ja2062506|pmid=21870825|issn=0002-7863}}
13. ^{{Cite journal|last=Zhu|first=Shifa|last2=Xu|first2=Xue|last3=Perman|first3=Jason A.|last4=Zhang|first4=X. Peter|date=2010-09-22|title=A General and Efficient Cobalt(II)-Based Catalytic System for Highly Stereoselective Cyclopropanation of Alkenes with α-Cyanodiazoacetates|journal=Journal of the American Chemical Society|volume=132|issue=37|pages=12796–12799|doi=10.1021/ja1056246|issn=0002-7863}}
14. ^{{Cite journal|last=Zhu|first=Shifa|last2=Perman|first2=Jason A.|last3=Zhang|first3=X. Peter|date=2008-10-20|title=Acceptor/Acceptor-Substituted Diazo Reagents for Carbene Transfers: Cobalt-Catalyzed Asymmetric Z-Cyclopropanation of Alkenes with α-Nitrodiazoacetates|journal=Angewandte Chemie International Edition|language=en|volume=47|issue=44|pages=8460–8463|doi=10.1002/anie.200803857|issn=1521-3773}}
15. ^{{Cite journal|last=Zhu|first=Shifa|last2=Ruppel|first2=Joshua V.|last3=Lu|first3=Hongjian|last4=Wojtas|first4=Lukasz|last5=Zhang|first5=X. Peter|date=2008-04-01|title=Cobalt-Catalyzed Asymmetric Cyclopropanation with Diazosulfones: Rigidification and Polarization of Ligand Chiral Environment via Hydrogen Bonding and Cyclization|journal=Journal of the American Chemical Society|volume=130|issue=15|pages=5042–5043|doi=10.1021/ja7106838|issn=0002-7863}}
16. ^{{Cite journal|last=Chen|first=Ying|last2=Ruppel|first2=Joshua V.|last3=Zhang|first3=X. Peter|date=2007-10-01|title=Cobalt-Catalyzed Asymmetric Cyclopropanation of Electron-Deficient Olefins|journal=Journal of the American Chemical Society|volume=129|issue=40|pages=12074–12075|doi=10.1021/ja074613o|issn=0002-7863}}
17. ^{{Cite journal|last=Cui|first=Xin|last2=Xu|first2=Xue|last3=Wojtas|first3=Lukasz|last4=Kim|first4=Martin M.|last5=Zhang|first5=X. Peter|date=2012-12-12|title=Regioselective Synthesis of Multisubstituted Furans via Metalloradical Cyclization of Alkynes with α-Diazocarbonyls: Construction of Functionalized α-Oligofurans|journal=Journal of the American Chemical Society|volume=134|issue=49|pages=19981–19984|doi=10.1021/ja309446n|issn=0002-7863|pmc=3531582|pmid=23205846}}
18. ^{{Cite journal|last=Cui|first=Xin|last2=Xu|first2=Xue|last3=Lu|first3=Hongjian|last4=Zhu|first4=Shifa|last5=Wojtas|first5=Lukasz|last6=Zhang*|first6=X. Peter|date=2011-03-16|title=Enantioselective Cyclopropenation of Alkynes with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis|journal=Journal of the American Chemical Society|volume=133|issue=10|pages=3304–3307|doi=10.1021/ja111334j|issn=0002-7863}}
{{DEFAULTSORT:Cobalt(II)-porphyrin catalysis}}

2 : Porphyrins|Catalysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 19:57:08