请输入您要查询的百科知识:

 

词条 Daiichi-Kashima Seamount
释义

  1. Geography and geology

      Regional    Local    Relation to the Japan Trench    Composition  

  2. Geological history

  3. References

      Sources  
{{Infobox seamount
| name = Daiichi-Kashima
| depth =
| height =
| map = {{Location map|Oceania
| label = Daiichi-Kashima
| mark = Red triangle with thick white border.svg
| coordinates = {{coord|35.5|N|142.4|E|notes={{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}}}}
}}
| map_caption = Location offshore Japan
| image =
| image_alt =
| image_caption =
| image_size =
| summit_area =
| translation =
| language =
| pronunciation =
| location = Western Pacific Ocean
| group =
| coordinates = {{coord|34.2|N|144.3|E|display=inline,title}}
| country = Japan
| type =
| volcanic_group =
| range =
| age =
| last_activity =
| last_eruption =
| discovered =
}}

Daiichi-Kashima Seamount is a guyot in the Pacific Ocean off Japan. It is about {{convert|3.5|km}} high and reaches a depth of {{convert|3540|m}}. Daiichi-Kashima formed during the Barremian as a result of volcanic activity; during the Albian reefs formed on the seamount and generated a limestone cap. The seamount later.

The seamount has been approaching the Japan Trench and a noticeable vertical offset of about {{convert|1.5|km}} between the eastern and western halves of Daiichi-Kashima appears to be the result of normal faulting as the seamount enters the trench, with the western half dropping down; it may also reflect a past sector collapse when the volcano was still active.

Geography and geology

Regional

The Daiichi-Kashima seamount lies {{convert|150|km}} east of Cape Inubō{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=257}} and Chōshi{{sfn|Oikawa|Watanabe|Kaneda|Nishizawa|2009|p=e5}} off the eastern coast of Honshu, Japan.{{sfn|Tani|1989|p=32}} Other seamounts in the area are Katori Seamount northeast of Daiichi-Kashima and Daini-Kashima Seamount east of Katori Seamount{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=258}} and the Kashima Fracture Zone ends southeast of the seamount.

Local

Daiichi-Kashima is a {{convert|3.5|km}} high and {{convert|50|km}} wide{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} guyot{{sfn|Tani|1989|p=44}} and rises to a depth of {{convert|3540|m}}.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=405}} On the eastern part of the volcano lies an at least {{convert|0.6|km}} thick platform of clay and reef limestone{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} with traces of past barrier reefs at its margins.{{sfn|Tani|1989|p=45}} The summit platform of Daiichi-Kashima covers an area of {{convert|83|km2}}.{{sfn|Konishi|1989|p=251}}

It is cut by several normal faults that run approximately parallel to the trench and have an offset of about {{convert|1.5|km}} in the central sector of the volcano; the carbonate platform is also offset in such a manner{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} by a normal fault represented by a{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=260}} scarp into a lower western and a higher eastern part.{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=257}} This fault, which appears to be split in two or three subsidiary faults separated by grabens,{{sfn|Lallemand|Culotta|Von Huene|1989|p=237}} extends past the Daiichi-Kashima seamount{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=260}} and covers a length of {{convert|100|km}}; evidently Daiichi-Kashima has been split in half by the fault, which is much younger than the ocean floor{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=265}} and moved at a rate of {{convert|1.2|cm/year|in/year}}{{sfn|Tani|1989|p=46}} but does not appear to be presently active in light of the sediment cover on the scarp.{{sfn|Konishi|1989|p=255}} Aside from a normal motion, the western half of the seamount has also been moved away from the eastern half and is tilted west.{{sfn|Tani|1989|p=45}}

The seamount appears to be part of a seamount chain called Joban Seamount Chain{{sfn|Oikawa|Watanabe|Kaneda|Nishizawa|2009|p=e6}} or Kashima-Ryofu No.1 that formed during the Cretaceous in the Equatorial Pacific{{sfn|Konishi|1989|p=249}} and about 30° south of their present-day position.{{sfn|Masse|Shiba|2010|p=152}} Based on isotope ratios it was once inferred that Daiichi-Kashima consists of two separate volcanoes{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|pp=404-405}}{{sfn|Lallemand|Culotta|Von Huene|1989|p=240}} but a later theory indicates that these are two separate stages of the same volcano.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=407}}

Relation to the Japan Trench

Daiichi-Kashima lies south of the Japan Trench on a seafloor of Valanginian age,{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} very close to the trench.{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=258}} The Pacific Plate is subducting beneath Japan at a rate of {{convert|9|cm/year|in/year}}{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} and close to the Daiichi-Kashima Seamount lies the Boso Triple Junction between the Japan Trench, the Sagami Trench and the Izu-Bonin Trench.{{sfn|Lallemand|Boulègue|Bourgois|Huchon|1986|p=103}} The subduction process may cause the downgoing oceanic plate to buckle and form normal faults that run parallel to the trench.{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=258}}

Since about 100,000 years, the western half of Daiichi-Kashima is being subducted in the Japan Trench{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=265}} and about one third{{sfn|Lallemand|Boulègue|Bourgois|Huchon|1986|p=104}} to one quarter of the seamount has been subducted already.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} Part of the landward margin of the trench close to Daiichi-Kashima is uplifted, perhaps as a consequence of the subduction of the seamount,{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=258}} and there is periodic earthquake activity in front of Daiichi-Kashima seamount with magnitude 7 earthquakes about every 20 years.[2] The seamount might also influence the segmentation of the trench and its earthquakes, considering that the rupture of the 2011 Tohoku earthquake spanned the trench length between Erimo Seamount and Daiichi-Kashima.[3] The other seamounts in the area will likely be subducted after Daiichi-Kashima has been.[4]

Composition

Volcanic rocks from Daiichi-Kashima include basanite, benmoreite and mugearite. There is a distinction between the eastern and western sectors of the volcano, with the western one consisting mainly of mugearite.{{sfn|Lallemand|Culotta|Von Huene|1989|p=240}} Phenocrysts identified in sampled rocks include aegirine-augite, alkali feldspar, amphibole, chromium spinel, clinopyroxene, magnetite, olivine and plagioclase.{{sfn|Takigami|Kaneoka|Ishii|Nakamura|1989|p=72}}

Dredging has found limestones on Daiichi-Kashima{{sfn|Konishi|1989|p=252}} which have been subdivided into an upper and a lower formation.{{sfn|Masse|Shiba|2010|p=148}} Especially on its western part ferromanganese crusts and phosphorites have been encountered as well.{{sfn|Konishi|1989|p=252}} Other rocks are rudistid-coral floatstones, oolithic grainstones{{sfn|Konishi|1989|p=255}} and peloidal wackestones containing algal pisolites{{sfn|Konishi|1989|p=253}} and other algal remnants. Other fossils include bivalves, corals, echinoids, foraminifers and stromatoporoidea.{{sfn|Konishi|1989|p=254}}{{sfn|Masse|Shiba|2010|p=148}} The rudist Praecaprotina kashimae is named after the seamount.{{sfn|Masse|Shiba|2010|p=149}}

Geological history

The volcano is of Barremian age, the limestones are of Aptian to Albian age.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=404}} Magnetic traits in the seamount suggest that it formed 140 - 120 million years ago close to a spreading center, which is older than the age of 100 million years inferred from fossils{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=264}} but comparable to ages inferred from radiometric dating.{{sfn|Takigami|Kaneoka|Ishii|Nakamura|1989|p=79}} Radiometric dating has yielded ages of 120.4 ± 2.7 million years ago for the eastern and of 117.8 ± 8.4 million years ago for the western side of the seamount.{{sfn|Konishi|1989|p=251}} The seamount is thus considered to be 120 - 100 million years old, while the underlying crust is about 20 million years older.{{sfn|Lallemand|Culotta|Von Huene|1989|p=240}} At the time of its formation, Daiichi-Kashima was located between 7.6° northern and 1° southern latitude, with one proposed coordinate being {{coord|1|S|165|W}}.[5]

One proposal envisages that volcanism took place in two separate stages, between which the western flank of the volcano underwent a large-scale collapse. In the first stage, basalts formed a volcanic island that eventually erupted trachytes. In a second stage, the western flank of the volcano collapsed and subsequently chemically different lavas and pyroclastics were emplaced, covering the bulk of the volcano and giving it a paired appearance similar to Reunion.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=407}}

During the Albian erosion and subsidence levelled the volcano, forming a flat surface. A carbonate platform developed on this surface first with fringing reefs and then with barrier reefs.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=407}} The carbonate platform continued to be active for 10 million years.{{sfn|Konishi|1989|p=260}} A research group of the Tokai University after studying dredged samples proposed that the limestones west and east of the central scarp are of different ages and developed at different sea levels: The western part would be of Barremian age and the eastern one of Albian age. This would explain why they lie at distinct depths.{{sfn|Kobayashi|Cadet|Aubouin|Boulègue|1987|p=259}}

After its drowning, Daiichi-Kashima continued to subside until it arrived at the Japan Trench{{sfn|Konishi|1989|p=260}} between 250,000 and 150,000 years ago.[2] The buckling of the ocean crust as it approached the trench induced faulting across Daiichi-Kashima and eventually another collapse of the western flank took place.{{sfn|Dominguez|Lallemand|Malavieille|Pouclet|1995|p=408}}

References

1. ^{{cite journal |last1=Catherine |first1=J. K. |last2=Gahalaut |first2=V. K. |last3=Kundu |first3=Bhaskar |title=Seamount subduction and rupture characteristics of the March 11, 2011, Tohoku earthquake |journal=Journal of the Geological Society of India |date=1 March 2012 |volume=79 |issue=3 |page=249 |doi=10.1007/s12594-012-0047-6 |language=en |issn=0974-6889}}
2. ^{{cite journal |last1=Uchiyama |first1=Akinori |last2=Kubota |first2=Ryuji |title=Three-dimensional magnetization vector inversion of a seamount |journal=Earth, Planets and Space |date=1 August 2005 |volume=57 |issue=8 |page=697 |doi=10.1186/BF03351849 |language=en |issn=1880-5981|bibcode=2005EP&S...57..691K }}
3. ^{{cite journal |last1=Yamazaki |first1=Toshitsugu |last2=Okamura |first2=Yukinobu |title=Subducting seamounts and deformation of overriding forearc wedges around Japan |journal=Tectonophysics |date=March 1989 |volume=160 |issue=1–4 |page=225 |doi=10.1016/0040-1951(89)90392-2 |url=https://www.sciencedirect.com/science/article/pii/0040195189903922 |language=en |issn=0040-1951|bibcode=1989Tectp.160..207Y }}
4. ^{{cite journal |last1=Kanazawa |first1=Toshihiko |last2=Yamanaka |first2=Yoshiko |last3=Shinohara |first3=Masanao |last4=Yamada |first4=Tomoaki |last5=Mochizuki |first5=Kimihiro |title=Weak Interplate Coupling by Seamounts and Repeating M ~ 7 Earthquakes |journal=Science |date=29 August 2008 |volume=321 |issue=5893 |pages=1194–7 |doi=10.1126/science.1160250 |pmid=18755973 |url=http://science.sciencemag.org/content/321/5893/1194 |language=en |issn=1095-9203|bibcode=2008Sci...321.1194M }}
[1][2][3][4]
}}

Sources

{{refbegin}}
  • {{cite journal|last1=Dominguez|first1=Stephane|last2=Lallemand|first2=S|last3=Malavieille|first3=J|last4=Pouclet|first4=A|date=January 1995|title=New structural interpretation of the Daiichi-Kashima seamount (Japan Trench) and subsequent geodynamic history|url=https://www.researchgate.net/publication/233919881|journal=Comptes Rendus de l'Académie des Sciences|volume=320|pages=403|ref=harv|lang=fr|via=ResearchGate}}
  • {{cite journal |last1=Kobayashi |first1=Kazuo |last2=Cadet |first2=Jean-Paul |last3=Aubouin |first3=Jean |last4=Boulègue |first4=Jacques |last5=Dubois |first5=Jacques |last6=von Huene |first6=Roland |last7=Jolivet |first7=Laurent |last8=Kanazawa |first8=Toshihiko |last9=Kasahara |first9=Junzo |last10=Koizumi |first10=Kin-ichiro |last11=Lallemand |first11=Serge |last12=Nakamura |first12=Yasuo |last13=Pautot |first13=Guy |last14=Suyehiro |first14=Kiyoshi |last15=Tani |first15=Shin |last16=Tokuyama |first16=Hidekazu |last17=Yamazaki |first17=Toshitsugu |title=Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3 |journal=Earth and Planetary Science Letters |date=May 1987 |volume=83 |issue=1–4 |pages=257–266 |doi=10.1016/0012-821X(87)90070-7 |url=https://www.sciencedirect.com/science/article/pii/0012821X87900707 |ref=harv |language=en |issn=0012-821X|bibcode=1987E&PSL..83..257K }}
  • {{cite journal |last1=Konishi |first1=Kenji |title=Limestone of the Daiichi Kashima Seamount and the fate of a subducting guyot: fact and speculation from the Kaiko "Nautile" dives |journal=Tectonophysics |date=March 1989 |volume=160 |issue=1–4 |pages=249–265 |doi=10.1016/0040-1951(89)90394-6 |url=https://www.sciencedirect.com/science/article/pii/0040195189903946 |ref=harv |language=en |issn=0040-1951|bibcode=1989Tectp.160..249K }}
  • {{cite conference|conference=International Kaiko conference on subduction zones|via=ResearchGate|url=https://www.researchgate.net/publication/260083365_Modalities_of_the_subduction-collision_of_the_Daiichi_Kashima_seamount_in_the_Japan_trench|ref=harv|last1=Lallemand|first1=S|last2=Boulègue|first2=Jacques|last3=Bourgois|first3=Jacques|

last4=Huchon|first4=Philippe|last5=Séguret|first5=Michel|date=1986|title=Modalities of the "subduction-collision" of the Daiichi Kashima seamount in the Japan trench.}}

  • {{cite journal |last1=Lallemand |first1=Serge |last2=Culotta |first2=Ray |last3=Von Huene |first3=Roland |title=Subduction of the Daiichi Kashima Seamount in the Japan Trench |journal=Tectonophysics |date=March 1989 |volume=160 |issue=1–4 |pages=231–247 |doi=10.1016/0040-1951(89)90393-4 |url=https://www.sciencedirect.com/science/article/pii/0040195189903934 |ref=harv |language=en |issn=0040-1951|bibcode=1989Tectp.160..231L }}
  • {{cite journal |last1=Masse |first1=Jean-Pierre |last2=Shiba |first2=Masahiro |title=Praecaprotina kashimae nov. sp.(Bivalvia, Hippuritacea) from the Daiichi-Kashima Seamount (Japan Trench) |journal=Cretaceous Research |date=April 2010 |volume=31 |issue=2 |pages=147–153 |doi=10.1016/j.cretres.2009.10.001 |url=https://www.sciencedirect.com/science/article/pii/S0195667109001207 |ref=harv |language=en |issn=0195-6671}}
  • {{cite journal |last1=Oikawa |first1=Mitsuhiro |last2=Watanabe |first2=Naoko |last3=Kaneda |first3=Kentaro |last4=Nishizawa |first4=Azusa |title=Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench |journal=Earth, Planets and Space |date=1 March 2009 |volume=61 |issue=3 |pages=e5–e8 |doi=10.1186/BF03352912 |ref=harv |language=en |issn=1880-5981}}
  • {{cite journal |last1=Takigami |first1=Yutaka |last2=Kaneoka |first2=Ichiro |last3=Ishii |first3=Teruaki |last4=Nakamura |first4=Yasuo |title=40Ar-39Ar ages of igneous rocks recovered from Daiichi-Kashima and Erimo Seamounts during the Kaiko project |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=June 1989 |volume=71 |issue=1–2 |pages=71–81 |doi=10.1016/0031-0182(89)90030-8 |url=https://www.sciencedirect.com/science/article/pii/0031018289900308 |ref=harv |language=en |issn=0031-0182|bibcode=1989PPP....71...71T }}
  • {{cite journal |last1=Tani |first1=Shin |title=Detailed topographic study of the Daiichi-Kashima seamount |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=June 1989 |volume=71 |issue=1–2 |pages=31–47 |doi=10.1016/0031-0182(89)90028-X |url=https://www.sciencedirect.com/science/article/pii/003101828990028X |ref=harv |language=en |issn=0031-0182|bibcode=1989PPP....71...31T }}
{{refend}}{{DEFAULTSORT:Daiichi-Kashima Seamount}}

2 : Cretaceous volcanoes|Seamounts of the Pacific Ocean

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 11:43:52