请输入您要查询的百科知识:

 

词条 Xenarthra
释义

  1. Evolutionary relationships

     Phylogeny 

  2. Classification

  3. Characteristics

  4. External links

{{Short description|Superorder of mammals that diversified in South America}}{{automatic taxobox
| name = Xenarthrans
| fossil_range = Paleocene –Recent, {{fossil range|59|0}}
| image = Choloepus hoffmanni (Puerto Viejo, CR) crop.jpg
| image_upright = 1.3
| image_caption = Hoffmann's two-toed sloth (Choloepus hoffmanni)
| taxon = Xenarthra
| authority = Cope, 1889
| subdivision_ranks = Orders and suborders
| subdivision =
  • Order Cingulata
  • Order Pilosa
  • Suborder Folivora
  • Suborder Vermilingua

See text for more details
}}

Xenarthra (Latin, from Ancient Greek ξένος (xénos, “foreign, alien”) + ἄρθρον (árthron, “joint”) is a superorder of placental mammals found in the Americas. It currently consists of anteaters, tree sloths, and armadillos. Xenarthrans originated in South America during the Paleocene about 59 million years ago.[1] They evolved and diversified extensively in South America during the continent's long period of isolation in the early to mid Cenozoic Era. They spread to the Antilles by the early Miocene and, starting about 3 Mya, spread to Central and North America as part of the Great American Interchange.[2] Nearly all of the formerly abundant megafaunal xenarthrans, such as ground sloths, glyptodonts, and pampatheres, became extinct at the end of the Pleistocene.

Xenarthrans share several characteristics not present in other placental mammals, and are often considered to be among the most primitive order of placental mammals. The name Xenarthra, which means "strange joints", was chosen because their vertebral joints have extra articulations unlike other mammals. This trait is referred to as "xenarthry". Also, unlike other mammals, the ischium and sacrum are fused.[3] The males have internal testicles, which are located between the bladder and the rectum.[4] Xenarthrans have been determined to have single-color vision. Furthermore, xenarthrans have the lowest metabolic rates among the therians.[5][6] They also seem to lack a functional pineal gland.[7]

Evolutionary relationships

Xenarthrans were previously classified alongside the pangolins and aardvarks in the order Edentata (meaning toothless, because the members do not have incisors and lack, or have poorly developed, molars). Subsequently, Edentata was found to be a polyphyletic grouping whose New World and Old World taxa are unrelated, and it was split up to reflect their true phylogeny. Aardvarks and pangolins are now placed in individual orders, and the new order Xenarthra was erected to group the remaining families (which are all related). The name Xenarthra means "strange joints", and was chosen because their vertebral joints have extra articulations and are unlike those of any other mammals.

The morphology of xenarthrans generally suggests that the anteaters and sloths are more closely related to each other than either is to the armadillos; this is upheld by molecular studies. Since its conception, Xenarthra has increasingly come to be considered to be of a higher rank than 'order'; some authorities consider it to be a cohort, while others consider it to be a superorder. Whatever the rank, Xenarthra is now generally considered to be divided into two orders: Cingulata, which contains the armadillos; and Pilosa, which contains the Vermilingua (anteaters) and Folivora (sloths; previously known as Tardigrada or Phyllophaga).[8]

Xenarthra may be most closely related to either Afrotheria[9] (in the group Atlantogenata), Boreoeutheria (in the group Exafroplacentalia), or Epitheria[10] (comprising Afrotheria and Boreoeutheria). In other words, it may be nested within Eutheria or it may be the basal extant group. A comprehensive phylogeny by Goloboff et al.[11] includes xenarthrans as a sister clade of Euarchontoglires within Boreoeutheria (Laurasiatheria+Euarchontoglires).

Phylogeny

Below is a recent simplified phylogeny of the xenarthran families based on Slater et al. (2016)[12] and Delsuc et al. (2016).[13] The dagger symbol, "†", denotes extinct groups.

{{clade|style=font-size:100%
|label1=Xenarthra
|1={{Clade
|label1=Cingulata
|1={{Clade
|1=Dasypodidae
|label2=
|2={{Clade
|1=†Pampatheriidae
|2=Chlamyphoridae
|label2=Pilosa
|2={{Clade
|label1=Vermilingua
|1={{Clade
|1=Cyclopedidae
|2=Myrmecophagidae
|label2=Folivora
|2={{Clade
|label1=
|1={{Clade
|1=†Megatheriidae
|label1=
|2={{Clade
|1=†Nothrotheriidae
|2=Bradypodidae
               }}             }}

|2={{Clade
|label1=
|1={{Clade
|1=†Mylodontidae
|2=Megalonychidae }} }} }} }} }} }}

Classification

XENARTHRA
  • Order Cingulata
    • Family Chlamyphoridae: armadillos and glyptodonts
    • Greater fairy armadillo, Calyptophractus retusus
    • Pink fairy armadillo, Chlamyphorus truncatus
    • Northern naked-tailed armadillo, Cabassous centralis
    • Chacoan naked-tailed armadillo, Cabassous chacoensis
    • Southern naked-tailed armadillo, Cabassous unicinctus
    • Greater naked-tailed armadillo, Cabassous tatouay
    • Screaming hairy armadillo, Chaetophractus vellerosus
    • Big hairy armadillo, Chaetophractus villosus
    • Andean hairy armadillo, Chaetophractus nationi
    • Six-banded armadillo or yellow armadillo, Euphractus sexcinctus
    • Giant armadillo, Priodontes maximus
    • Southern three-banded armadillo, Tolypeutes matacus
    • Brazilian three-banded armadillo, Tolypeutes tricinctus
    • Pichi or dwarf armadillo, Zaedyus pichiy
    • Subfamily †Glyptodontinae: glyptodonts
    • Family Dasypodidae: long-nosed armadillos
    • Nine-banded armadillo or long-nosed armadillo, Dasypus novemcinctus
    • Seven-banded armadillo, Dasypus septemcinctus
    • Southern long-nosed armadillo, Dasypus hybridus
    • Llanos long-nosed armadillo, Dasypus sabanicola
    • Great long-nosed armadillo, Dasypus kappleri
    • Hairy long-nosed armadillo, Dasypus pilosus
    • Yepes's mulita, Dasypus yepesi
    • Family †Pampatheriidae: pampatheres
  • Order Pilosa
    • Suborder Folivora: sloths
    • Family Bradypodidae: three-toed sloths
    • Pygmy three-toed sloth, Bradypus pygmaeus
    • Brown-throated three-toed sloth, Bradypus variegatus
    • Pale-throated three-toed sloth, Bradypus tridactylus
    • Maned three-toed sloth, Bradypus torquatus
    • Family Megalonychidae: two-toed sloths and extinct megalonychid ground sloths
    • Hoffman's two-toed sloth, Choloepus hoffmanni
    • Linnaeus's two-toed sloth or southern two-toed sloth, Choloepus didactylus
    • Family †Megatheriidae: megatheriid ground sloths
    • Family †Mylodontidae: mylodontid ground sloths
    • Family †Nothrotheriidae: nothrotheriid ground sloths and aquatic sloths
    • Suborder Vermilingua: anteaters
    • Family Cyclopedidae: silky anteaters
    • Silky anteater, Cyclopes didactylus
    • Family Myrmecophagidae: anteaters
    • Giant anteater, Myrmecophaga tridactyla
    • Northern tamandua, Tamandua mexicana
    • Southern tamandua, Tamandua tetradactyla

Characteristics

Xenarthrans share several characteristics not present in other placental mammals, and are often considered to be among the most primitive order of placental mammals. The name Xenarthra, which means "strange joints", was chosen because their vertebral joints have extra articulations unlike other mammals. This trait is referred to as "xenarthry". Also, unlike other mammals, the ischium and sacrum are fused.[14] The males have internal testicles, which are located between the bladder and the rectum.[15] Xenarthrans have been determined to have single-color vision. Through PCR analysis, it was discovered that a mutation in a stem Xenarthran led to long-wavelength sensitive-con (LWS) monochromacy (single color vision) common in nocturnal, aquatic and subterranean mammals.[16] Further losses led to rod monochromancy in a stem cingulate and a stem pilosan pointing to a subterranean ancestry.[16] Furthermore, xenarthrans have the lowest metabolic rates among the therians.[17][18] They also seem to lack a functional pineal gland.[19]

==References==

1. ^{{cite journal | last1 = O'Leary | first1 = M. A. | last2 = Bloch | first2 = J. I. | last3 = Flynn | first3 = J. J. | last4 = Gaudin | first4 = T. J. | last5 = Giallombardo | first5 = A. | last6 = Giannini | first6 = N. P. | last7 = Cirranello | first7 = A. L. | year = 2013 | title = The placental mammal ancestor and the post–K-Pg radiation of placentals | url = | journal = Science | volume = 339 | issue = 6120| pages = 662–667 | doi=10.1126/science.1229237 | pmid=23393258| hdl = 11336/7302 | bibcode = 2013Sci...339..662O }}
2. ^{{cite journal |doi=10.1007/s10914-010-9144-8 |title=The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens |year=2010 |last1=Woodburne |first1=Michael O. |journal=Journal of Mammalian Evolution |volume=17 |issue=4 |pages=245–264 |pmid=21125025 |pmc=2987556}}
3. ^{{Cite journal | last1 = Delsuc | first1 = Frédéric | last2 = Catzteflis | first2 = François M. | last3 = Stanhope | first3 = Michael J. | last4 = Douzery | first4 = Emmanuel J. P. | title = The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua | journal = Proc. R. Soc. Lond. B |date=August 2001 | volume = 268 | issue = 1476 | pages = 1605–15 | url = http://fdelsuc.perso.neuf.fr/fd_files/Delsuc-ProcRSocB01.pdf | doi = 10.1098/rspb.2001.1702 | pmc = 1088784 | pmid=11487408}}
4. ^{{cite journal |pmid=20413907 |year=2010 |last1=Kleisner |first1=K |last2=Ivell |first2=R |last3=Flegr |first3=J |title=The evolutionary history of testicular externalization and the origin of the scrotum |volume=35 |issue=1 |pages=27–37 |journal=Journal of Biosciences |doi=10.1007/s12038-010-0005-7}}
5. ^{{cite journal |first1=M. A. |last1=Elgar |first2=P. H. |last2=Harvey |year=1987 |title=Basal Metabolic Rates in Mammals: Allometry, Phylogeny and Ecology |journal=Functional Ecology |volume=1 |issue=1 |pages=25–36 |jstor=2389354 |doi=10.2307/2389354}}
6. ^{{cite journal |first1=Barry G. |last1=Lovegrove |year=2000 |title=The Zoogeography of Mammalian Basal Metabolic Rate |journal=The American Naturalist |volume=156 |issue=2 |pages=201–19 |doi=10.1086/303383 |pmid=10856202 |jstor=3079219}}
7. ^[https://books.google.no/books?id=VH7SBwAAQBAJ&pg=PA62&dq=pineal+regularly+present+Xenarthra&hl=no&sa=X&ved=0ahUKEwiCvYzVlp7aAhWLVywKHascC5oQ6AEIKDAA#v=onepage&q=pineal%20regularly%20present%20Xenarthra&f=false The Pineal Gland and its Endocrine Role]
8. ^{{cite book | last1 = McKenna | first1 = M.C. | last2 = Bell | first2 = S.K. | title = Classification of Mammals Above the Species Level | publisher = Columbia University Press | location = New York | isbn = 978-0-231-11013-6 | oclc = 37345734| year = 1997 | pages = 93}}
9. ^{{cite journal |doi=10.1101/gr.5918807 |title=Using genomic data to unravel the root of the placental mammal phylogeny |year=2007 |last1=Murphy |first1=W. J. |last2=Pringle |first2=T. H. |last3=Crider |first3=T. A. |last4=Springer |first4=M. S. |last5=Miller |first5=W. |journal=Genome Research |volume=17 |issue=4 |pages=413–21 |pmid=17322288 |pmc=1832088}}
10. ^{{cite journal |doi=10.1371/journal.pbio.0040091 |title=Retroposed Elements as Archives for the Evolutionary History of Placental Mammals |year=2006 |last1=Kriegs |first1=Jan Ole |last2=Churakov |first2=Gennady |last3=Kiefmann |first3=Martin |last4=Jordan |first4=Ursula |last5=Brosius |first5=Jürgen |last6=Schmitz |first6=Jürgen |journal=PLoS Biology |volume=4 |issue=4 |pages=e91 |pmid=16515367 |pmc=1395351}}
11. ^{{cite journal |doi=10.1111/j.1096-0031.2009.00255.x |title=Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups |year=2009 |last1=Goloboff |first1=Pablo A. |last2=Catalano |first2=Santiago A. |last3=Marcos Mirande |first3=J. |last4=Szumik |first4=Claudia A. |last5=Salvador Arias |first5=J. |last6=Källersjö |first6=Mari |last7=Farris |first7=James S. |journal=Cladistics |volume=25 |issue=3 |pages=211–30}}
12. ^Slater, G., Cui, P., Forasiepi, A. M., Lenz, D., Tsangaras, K., Voirin, B., ... & Greenwood, A. D. (2016). Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biology and Evolution, evw023.
13. ^Delsuc, F., Gibb, G. C., Kuch, M., Billet, G., Hautier, L., Southon, J., ... & Poinar, H. N. (2016). The phylogenetic affinities of the extinct glyptodonts. Current Biology, 26(4), R155-R156.
14. ^{{Cite journal | last1 = Delsuc | first1 = Frédéric | last2 = Catzteflis | first2 = François M. | last3 = Stanhope | first3 = Michael J. | last4 = Douzery | first4 = Emmanuel J. P. | title = The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua | journal = Proc. R. Soc. Lond. B |date=August 2001 | volume = 268 | issue = 1476 | pages = 1605–15 | url = http://fdelsuc.perso.neuf.fr/fd_files/Delsuc-ProcRSocB01.pdf | doi = 10.1098/rspb.2001.1702 | pmc = 1088784 | pmid=11487408}}
15. ^{{cite journal |pmid=20413907 |year=2010 |last1=Kleisner |first1=K |last2=Ivell |first2=R |last3=Flegr |first3=J |title=The evolutionary history of testicular externalization and the origin of the scrotum |volume=35 |issue=1 |pages=27–37 |journal=Journal of Biosciences |doi=10.1007/s12038-010-0005-7}}
16. ^{{Cite journal|last=Emerling|first=Christopher A.|last2=Springer|first2=Mark S.|date=2015-02-07|title=Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra|journal=Proceedings of the Royal Society B: Biological Sciences|volume=282|issue=1800|pages=20142192|doi=10.1098/rspb.2014.2192|issn=0962-8452|pmc=4298209|pmid=25540280}}
17. ^{{cite journal |first1=M. A. |last1=Elgar |first2=P. H. |last2=Harvey |year=1987 |title=Basal Metabolic Rates in Mammals: Allometry, Phylogeny and Ecology |journal=Functional Ecology |volume=1 |issue=1 |pages=25–36 |jstor=2389354 |doi=10.2307/2389354}}
18. ^{{cite journal |first1=Barry G. |last1=Lovegrove |year=2000 |title=The Zoogeography of Mammalian Basal Metabolic Rate |journal=The American Naturalist |volume=156 |issue=2 |pages=201–19 |doi=10.1086/303383 |pmid=10856202 |jstor=3079219}}
19. ^[https://books.google.no/books?id=VH7SBwAAQBAJ&pg=PA62&dq=pineal+regularly+present+Xenarthra&hl=no&sa=X&ved=0ahUKEwiCvYzVlp7aAhWLVywKHascC5oQ6AEIKDAA#v=onepage&q=pineal%20regularly%20present%20Xenarthra&f=false The Pineal Gland and its Endocrine Role]

External links

{{Wiktionary}}{{Wikispecies}}{{Commons category}}
  • {{cite journal |first1=Derek E. |last1=Wildman |first2=Caoyi |last2=Chen |first3=Offer |last3=Erez |first4=Lawrence I. |last4=Grossman |first5=Morris |last5=Goodman |first6=Roberto |last6=Romero |doi=10.1073/pnas.0511344103 |title=Evolution of the mammalian placenta revealed by phylogenetic analysis |year=2006 |journal=Proceedings of the National Academy of Sciences |volume=103 |issue=9 |pages=3203–3208 |bibcode=2006PNAS..103.3203W |jstor=30048561 |pmid=16492730 |pmc=1413940}}
  • {{Cite web | title = Armadillos: Biology, Ecology and Images | publisher = Armadillo Online | url = https://armadillo-online.org/species.html | date = 1995 | access-date = 19 December 2017}}
{{Mammals}}{{Portal bar|Mammals}}{{Taxonbar|from=Q173612}}

4 : Xenarthrans|Chordate superorders|Extant Paleocene first appearances|Taxa named by Edward Drinker Cope

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 4:02:19