请输入您要查询的百科知识:

 

词条 Dihydrolevoglucosenone
释义

  1. Presentation

  2. Properties

  3. Applications

      Dihydroglucosenone as a precursor    Dihydroglucosenone as a polar solvent  

  4. Production

  5. Literature

  6. References

{{technical|date=January 2019}}{{Chembox
| ImageFile = Dihydrolevoglucosenone.svg
| ImageSize = 120px
| IUPACName = (1R)-7,8-Dioxabicyclo[3.2.1]octan-2-one
| OtherNames = Cyrene
| Section1 = {{Chembox Identifiers
| CASNo = 53716-28-8
| PubChem = 16762483
| EINECS = 807-130-4
| ChemSpiderID = 9150700
| SMILES = C1CC(=O)[C@@H]2OCC1O2
| StdInChI=1S/C6H8O3/c7-5-2-1-4-3-8-6(5)9-4/h4,6H,1-3H2/t4?,6-/m1/s1
| StdInChIKey = WHIRALQRTSITMI-BAFYGKSASA-N
| Section2 = {{Chembox Properties
| C=6|H=8|O=3
| Appearance = clear to yellowish liquid
| Density = 1.25
| MeltingPt =
| BoilingPtC = 227
| Solubility = miscible
| Section3 = {{Chembox Hazards
| Hazards_ref=[1]
| MainHazards =
| FlashPtC = 108
| AutoignitionPtC = 296
| AutoignitionPt =
| GHSPictograms = {{GHS07}}
| GHSSignalWord = Warning
| HPhrases = {{H-phrases|319}}
| PPhrases = {{P-phrases|305+351+338|313}}
}}Dihydrolevoglucosenone is a bicyclic, chiral, seven-membered heterocyclic cycloalkanone which is a bio-based and fully biodegradable aprotic dipolar solvent.[2][3][4] It is a safer and "greener" alternative to toxic organic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP).[5]

Presentation

Dihydrolevoglucosenone can be prepared through the hydrogenation of unsaturated anhydrosugar levoglucosenone (LGO) – a chemical building block obtained by acid-catalysed pyrolysis[6] at 300 °C of lignocellulosic biomass such as wood waste or sawdust. A significant amount of char is produced, as a by-product of LGO production, which can be used as a fuel.

When cellulose in tetrahydrofuran is heated to 210 °C with low concentrations of sulfuric acid in an autoclave, up to 51% levoglucosenone can be obtained through a solvent-assisted pyrolysis.[7] Under optimized laboratory conditions, yields of up to 95% of levoglucosenone can be reached.[8]

Cellulose-containing waste from biorefineries can also be converted into 6-8% LGO under microwave irradiation at 180 °C for 5 minutes, in addition to the usual decomposition products such as hydroxymethylfurfural HMF, formic acid, formaldehyde, CO2 and water.[9]

Hydrogenation of the α, β-unsaturated ketone levoglucosenone (LGO) with a metal catalyst such as  palladium on alumina (Pd/Al2O3) at 40 °C, leads selectively to Dihydrolevoglucosenone.[10]

At higher temperatures, dihydrolevoglucosenone can be converted to secondary alcohol levoglucosanol and further to tetrahydrofuran-2,5-dimethanol through hydrogenation.

Properties

Dihydrolevoglucosenone is a clear colorless, to light yellow, liquid with a comparatively high dynamic viscosity of 14.5 cP[11] (for comparison DMF: 0.92 cP at 20 °C, NMP: 1.67 cP at 25 °C) and a mild, smoky ketone-like odor.[12] It is miscible with water and many organic solvents.[12] The compound is stable at temperatures up to 195 °C and weak acids and bases.  H2-LGO reacts with inorganic bases via an aldol condensation mechanism. Dihydrolevoglucosenone is readily biodegradable (99% within 14 days) and reacts to oxidants such as aqueous 30% hydrogen peroxide solution even at room temperature. Dihydrolevoglucosenone has a boiling point of 227 °C at 100.7 kPa (vs 202 °C for NMP).

Applications

Dihydroglucosenone as a precursor

Dihydrolevoglucosenone can be used as a bio-based building block to produce a number of higher value chemicals such as drugs, flavours and fragrances and specialty polymers.[10]

The oxidation of dihydrolevoglucosenone with peracids such as peracetic acid in acetic acid produces optically pure 5-hydroxymethyldihydrofuranone [(S) - (+) - 4-hydroxymethyl-γ-butyrolactone],[13] from which zalcitabine (2'-3'-dideoxycytidine, ddC), formerly a HIV drug, is available.[14]

In a two-step hydrogenation process with a metal catalyst – first at 60 °C then at 180 °C – 1,6-hexanediol is mainly obtained via several intermediates.[15] 1,6-hexanediol can be used as a starting material for the production of polyesters, polyurethanes and diamine 1,6-diaminohexane.

At elevated temperature and in the presence of a palladium catalyst, hydrogenolysis of dihydrolevoglucosenone via levoglucosanol selectively yields tetrahydrofuran-2,5-dimethanol (THF-dimethanol),[10] which is a biodegradable solvent and a bio-based precursor to 1,6-hexanediol (and 1,6-diaminohexane).[16]

Dihydroglucosenone as a polar solvent

The search for alternative "green" solvents made from biomass or low-cost renewable raw materials, which are accessible through high-efficiency processes, in high yields, and meet the performance of conventional solvents,[17] has triggered intensive research activities in industry and academia worldwide.

Dihydrolevoglucosenone is considered a candidate as a "green" aprotic dipolar solvent.[3] Several standard reactions of organic chemistry, e.g. Mannutkin reaction,[3] Sonogashira coupling,[18] Suzuki-Miyaura coupling,[19] or the synthesis of organic ureas[20] have been carried out in dihydroglucosenone.

Production

Circa Group produces dihydrolevoglucosenone from cellulose under the Cyrene brand and has built a 50-tonne demonstration plant with partners in Tasmania. The company estimates that dihydroglucosenone performs better than NMP in 45% and comparably to NMP in 20% of trials to date. Circa received authorization in 2018 from the European Chemicals Agency (ECHA) to produce or import up to 100 tonnes per year of dihydroglucosenone to the EU.[21]

Literature

  • DS van Es: Study into alternative (biobased) polar aprotic solvents. Wageningen University, Wageningen 2017 (wur.nl [PDF]).
  • JH Clark, A. Hunt, C. Topi, G. Paggiola, J. Sherwood: Sustainable Solvents: Perspectives from Research, Business and Institutional Policy . Royal Society of Chemistry, London 2017, {{ISBN|978-1-78262-335-9}} .

References

1. ^{{cite web |author1=Circa Group |title=Safety Data Sheet |url=https://static1.squarespace.com/static/5643eb3de4b0c236a2510a8c/t/5922427020099edb190a88f6/1495417463118/MSDS_Cyrene+V12+170123_IATA%5B7%5D.pdf |date=23 January 2017}}
2. ^{{Cite web |url=https://pubag.nal.usda.gov/catalog/5822622 |title=Concise and Efficient Synthesis of E-stereoisomers of exo-cyclic Carbohydrate Enones. Aldol Condensation of Dihydrolevoglucosenone with Five-membered Aromatic Aldehydes1 Part 1. - PubAg |website=pubag.nal.usda.gov |publisher=United States National Agricultural Library, USA.gov |location=US |access-date=2019-01-31}}
3. ^{{Cite journal |title=Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents |journal = Chem. Commun.|volume = 50|issue = 68|last=Sherwood |first=James |last2=De bruyn |first2=Mario |date=2014-09-04 |pages=9650–9652 |doi=10.1039/c4cc04133j |pmid=25007289 |last3=Constantinou |first3=Andri |last4=Moity |first4=Laurianne |last5=McElroy |first5=C. Rob |last6=Farmer |first6=Thomas J. |last7=Duncan |first7=Tony |last8=Raverty |first8=Warwick |last9=Hunt |first9=Andrew J.}}
4. ^{{Cite web |url=https://echa.europa.eu/registration-dossier/-/registered-dossier/16252/11 |title=(1S,5R)-6,8-dioxabicyclo[3.2.1]octan-4-one - Registration Dossier - ECHA |website=echa.europa.eu |publisher=European Chemicals Agency, Europa (web portal) |access-date=2019-01-31}}
5. ^{{Cite journal|last=Clark|first=James H.|last2=Hunt|first2=Andrew J.|last3=Raverty|first3=Warwick|last4=Duncan|first4=Tony|last5=Farmer|first5=Thomas J.|last6=McElroy|first6=C. Rob|last7=Moity|first7=Laurianne|last8=Constantinou|first8=Andri|last9=Bruyn|first9=Mario De|date=2014-07-29|title=Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents|journal=Chemical Communications|volume=50|issue=68|pages=9650–9652|doi=10.1039/C4CC04133J|pmid=25007289|issn=1364-548X|df=}}
6. ^{{Cite book|chapter=A Convenient Procedure for the Preparation of Levoglucosenone and Its Conversion to Novel Chiral Derivatives|last=Trahanovsky|display-authors=et al|date=December 5, 2002|doi=10.1021/bk-2003-0841.ch002|title = Carbohydrate Synthons in Natural Products Chemistry|volume = 841|pages=21–31|series = ACS Symposium Series|isbn = 978-0-8412-3740-7}}
7. ^{{Cite journal|last=Huber|first=George W.|last2=Dumesic|first2=James A.|last3=Krishna|first3=Siddarth H.|last4=McClelland|first4=Daniel J.|last5=Schwartz|first5=Thomas J.|last6=Cao|first6=Fei|date=2015-06-03|title=Dehydration of cellulose to levoglucosenone using polar aprotic solvents|journal=Energy & Environmental Science|volume=8|issue=6|pages=1808–1815|doi=10.1039/C5EE00353A|issn=1754-5706|df=}}
8. ^{{Citation|title=Method for selectively preparing evoglucosenone (LGO) and other anhydrosugars from biomass in polar aprotic solvents|url=https://patents.google.com/patent/US9376451B1/en|date=2014-12-31|access-date=2019-01-31}}
9. ^{{Cite journal|last=Clark|first=J. H.|last2=McQueen-Mason|first2=S. J.|last3=Raverty|first3=W. D.|last4=Farmer|first4=T. J.|last5=Simister|first5=R.|last6=Gomez|first6=L. D.|last7=Macquarrie|first7=D. J.|last8=Budarin|first8=V. L.|last9=Fan|first9=J.|date=2016-08-02|title=A new perspective in bio-refining: levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides|journal=Energy & Environmental Science|volume=9|issue=8|pages=2571–2574|doi=10.1039/C6EE01352J|issn=1754-5706|df=}}
10. ^{{Cite journal|last=Huber|first=George W.|last2=Dumesic|first2=James A.|last3=Rashke|first3=Quinn A.|last4=McClelland|first4=Daniel J.|last5=Krishna|first5=Siddarth H.|date=2017-03-06|title=Hydrogenation of levoglucosenone to renewable chemicals|journal=Green Chemistry|volume=19|issue=5|pages=1278–1285|doi=10.1039/C6GC03028A|issn=1463-9270|df=}}
11. ^{{Cite journal|last=Shuttleworth|first=P. S.|last2=Clark|first2=J. H.|last3=Ellis|first3=G. J.|last4=Budarin|first4=V. L.|last5=Bruyn|first5=M. De|last6=Sherwood|first6=J.|last7=Salavagione|first7=H. J.|date=2017-06-06|title=Identification of high performance solvents for the sustainable processing of graphene|journal=Green Chemistry|volume=19|issue=11|pages=2550–2560|doi=10.1039/C7GC00112F|issn=1463-9270|df=}}
12. ^{{Cite web|url=https://static1.squarespace.com/static/5643eb3de4b0c236a2510a8c/t/5922423c5016e1a64b943dda/1495417406168/Datasheet_Cyrene170306%5B7%5D.pdf|title=Circa Data Sheet|last=|first=|date=|website=|archive-url=https://web.archive.org/web/20180109195157/https://static1.squarespace.com/static/5643eb3de4b0c236a2510a8c/t/5922423c5016e1a64b943dda/1495417406168/Datasheet_Cyrene170306%5B7%5D.pdf|archive-date=2018-01-09|dead-url=no|access-date=|df=}}
13. ^{{Citation|title=Method of producing (S)-4-hydroxymethyl-γ-lactone|date=1990-09-17|url=https://patents.google.com/patent/US5112994A/en|access-date=2019-01-31}}
14. ^{{Cite journal|title=Synthesis of the dideoxynucleosides "ddC" and "CNT" from glutamic acid, ribonolactone, and pyrimidine bases|journal = The Journal of Organic Chemistry|volume = 53|issue = 20|pages = 4780–4786|last=Okabe|first=Masami|last2=Sun|first2=Ruen Chu|date=2002-05-01|doi=10.1021/jo00255a021|last3=Tam|first3=Steve Y. K.|last4=Todaro|first4=Louis J.|last5=Coffen|first5=David L.}}
15. ^{{Citation|title=Process for preparing 1,6-hexanediol|date=2013-04-25|url=https://patents.google.com/patent/US8889912B2/en|access-date=2019-01-31}}
16. ^{{Cite journal|last=Huber|first=George W.|last2=Dumesic|first2=James A.|last3=Hermans|first3=Ive|last4=Maravelias|first4=Christos T.|last5=Banholzer|first5=Williams F.|last6=Walker|first6=Theodore|last7=Burt|first7=Samuel P.|last8=Brentzel|first8=Zachary J.|last9=Alonso|first9=David M.|date=2017-09-20|title=New catalytic strategies for α,ω-diols production from lignocellulosic biomass|journal=Faraday Discussions|volume=202|pages=247–267|doi=10.1039/C7FD00036G|pmid=28678237|issn=1364-5498|df=}}
17. ^{{Cite journal|last=Byrne|first=Fergal P.|last2=Jin|first2=Saimeng|last3=Paggiola|first3=Giulia|last4=Petchey|first4=Tabitha H. M.|last5=Clark|first5=James H.|last6=Farmer|first6=Thomas J.|last7=Hunt|first7=Andrew J.|last8=Robert McElroy|first8=C.|last9=Sherwood|first9=James|date=2016-05-23|title=Tools and techniques for solvent selection: green solvent selection guides|journal=Sustainable Chemical Processes|volume=4|issue=1|pages=7|doi=10.1186/s40508-016-0051-z|issn=2043-7129}}
18. ^{{Cite journal|last=Watson|first=Allan J. B.|last2=Jamieson|first2=Craig|last3=Greatrex|first3=Ben|last4=Murray|first4=Jane|last5=Kennedy|first5=Alan R.|last6=Wilson|first6=Kirsty L.|date=2016-09-08|title=Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation|journal=Beilstein Journal of Organic Chemistry|volume=12|issue=1|pages=2005–2011|doi=10.3762/bjoc.12.187|pmid=27829904|pmc=5082449|issn=1860-5397|df=}}
19. ^{{Cite journal|last=Watson|first=Allan J. B.|last2=Jamieson|first2=Craig|last3=Murray|first3=Jane|last4=Wilson|first4=Kirsty L.|date=2017-12-11|title=Cyrene as a Bio-Based Solvent for the Suzuki–Miyaura Cross-Coupling|journal=Synlett|volume=29|issue=5|pages=650–654|doi=10.1055/s-0036-1589143|issn=0936-5214}}
20. ^{{Cite journal|last=Camp|first=Jason E.|last2=Bousfield|first2=Thomas W.|last3=Mapesa|first3=Kopano|last4=Mistry|first4=Liam|date=2017-05-08|title=Synthesis of ureas in the bio-alternative solvent Cyrene|journal=Green Chemistry|volume=19|issue=9|pages=2123–2128|doi=10.1039/C7GC00908A|issn=1463-9270|df=}}
21. ^{{Cite web|url=https://www.biobasedworldnews.com/circa-gets-thumbs-up-from-eu-to-sell-its-bio-based-solvent-in-the-bloc|title=Circa gets thumbs up from EU to sell its bio-based solvent in the bloc.|last=Gyekye|first=Liz|website=www.biobasedworldnews.com|archive-url=https://web.archive.org/web/20190105091624/https://www.biobasedworldnews.com/circa-gets-thumbs-up-from-eu-to-sell-its-bio-based-solvent-in-the-bloc|archive-date=2019-01-05|dead-url=no|access-date=2019-01-31|df=}}

4 : Cycloalkanones|Solvents|Bicyclic compounds|Ethers

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 18:23:02