词条 | Draft:Cerebral blood volume |
释义 |
PathophysiologyThe typical human adult's nerve skull contains approximately 1500 grams of the brain (including gray matter and white matter), 100-130 milliliters of blood, and 75 milliliters of cerebrospinal fluid. About 15% of the blood volume is present in the arteries, 40% in the veins, and 45% in the nerve tissue and capillaries.[2] There is a difference between the cerebral blood volume of gray and white matter. The cerebral blood volume value of gray matter is about 3.5 +/- 0.4 ml/100g, and the white matter is about 1.7 +/- 0.4 ml/100g. The gray matter is nearly twice that of white matter.[3] In both white and gray matter, cerebral blood volume decreases by about 0.50% per year with increasing age.[4] Intracranial hematoma and Intracerebral hemorrhage (ICH) will cause an increase in cerebral blood volume.[5] The ischemic stroke will cause a substantial reduction in cerebral blood volume.[6] Measurement methodsMagnetic resonance imaging (MRI)The cerebral blood volume maps can be calculated by dynamic magnetic resonance image set obtained by echo planar imaging after intravenous injection of thiol contrast agent.[7] Planar imaging techniques or single high-speed shots provide the necessary resolution for contrast agents to display rapid brain blood movements[8].These magnetic resonance cerebral blood volume imaging methods can be applied to academic research of normal human brain activities and clinical studies of patients with brain tumors.[9][10] Emission computed tomography (ECT)In vivo studies using emission computed tomography gave coefficients of variation for regional cerebral blood volume and cross-sectional cerebral blood volume over 80 minutes.[11]A clear tomographic depiction of cerebral blood volume distribution in human subjects can achieve by using emission computed tomography, which provides real-time measurements of the cerebral hemodynamic parameters.[12] CO administered by a single inhalation is a reliable and accurate blood tracer for measuring cerebral blood volume with emission computed tomography.[13][14] Synchrotron radiation computed tomography (SRCT)Synchrotron Radiation Computed Tomography (SRCT) uses a monochromatic and parallel X-ray beam to measure the value of cerebral blood volume. It allows the sample to be placed away from the detector, thereby avoiding scattering effects.[15] This technique measures absolute contrast concentration with relatively high precision and spatial resolution. Cerebral blood volume measurements are based on methods used in dynamic computed tomography. After a large dose of iodinated contrast agent was injected into the brain tissue, the temporal change in iodine concentration was compared to changes in cerebral arterial input. It is a new method for studying hemodynamic changes in brain pathophysiology, including clinical studies of cerebrovascular diseases or brain tumors.[16] This method will be useful in clinical trials for the further treatment of brain tumors with the help of therapies that can induce changes in cerebral perfusion. Measures the changes in cerebral blood volume in hyper-acute stroke can help predict the development of infarction and select subjects who will benefit from thrombolysis.[17] Clinical applicationGliomaThe treatment of glioma usually requires surgery, chemotherapy, and radiotherapy. After the end of treatment, the recurrence of glioma and the radiation effect after treatment must be closely monitored.[18] The types of glioma include glioblastoma with unenhanced anaplastic glioma, low-grade glioma, and enhanced anaplastic glioma.[19] After comparing the relative cerebral blood volume (rCBV) ratio and histological angiographic analysis of several gliomas, and determining the relationship between the relative cerebral blood volume ratio and several gliomas.[20][21] It can be seen that the cerebral blood volume map pro-vides functional parameters to help glioma grading and to determine the location of the center of the lesion.[22] The cerebral blood volume of glioma obtained by Dynamic Susceptibility-weighted Contrast-enhanced Perfusion magnetic resonance Imaging is significantly correlated with the determination of tumor grade in histopathology.[23] By comparing dynamic susceptibility with enhanced perfusion magnetic resonance imaging, the results can be used to predict disease progression in glioma patients.[24] Patients with gliomas with higher relative cerebral blood volume have a significantly faster disease progression than glioma patients with lower cerebral blood volume.[25] StrokeMagnetic resonance imaging can depict areas of blood volume change in hyperacute strokes. Studies have shown that blood volume in patients with hyperacute stroke increases around diffuse abnormalities, suggesting a compensatory hemodynamic response.[26] Besides, cerebral blood volume values can be used to distinguish between oligemic and infarcted areas. This data can be used to monitor the viability of ischemic brain tissue.[27] For patients with increased cerebral blood volume, their risk of ischemic stroke increases, indicating that their hemodynamic damage is more severe than patients with normal cerebral blood volume. Based on the relative cerebral blood flow measured by magnetic resonance imaging and additional clinical diagnostic information, it is possible to assess the presence of salvageable brain tissue and the risk of bleeding in damaged tissue, thus allowing appropriate treatment for individual patients.[28] Apparent diffusion coefficient abnormalities represent metabolic damage in the brain, while hemodynamic abnormalities represent tissue perfusion abnormalities. The mismatch between these two data can be observed by this method. Relative cerebral blood volume imaging is feasible as a reference for common clinical treatment, and it can be used as a useful predictor when used together with other functional magnetic resonance imaging results. Cerebral blood flowCerebral blood volume has a close and positive correlation with cerebral blood flow (CBF). Both cerebral blood volume and cerebral blood flow depend on several important parameters, including cerebrovascular resistance, intracranial pressure (ICP), and mean arterial pressure (MAP).[1] The ratio between cerebral blood flow and cerebral blood volume can be an accurate predictor of decreased cerebral perfusion pressure, thereby predicting cerebral circulation.[29][30] References1. ^1 {{Cite journal|last=LEENDERS|first=K. L.|last2=PERANI|first2=D.|last3=LAMMERTSMA|first3=A. A.|last4=HEATHER|first4=J. D.|last5=BUCKINGHAM|first5=P.|last6=JONES|first6=T.|last7=HEALY|first7=M. J. R.|last8=GIBBS|first8=J. M.|last9=WISE|first9=R. J. S.|date=1990|title=CEREBRAL BLOOD FLOW, BLOOD VOLUME AND OXYGEN UTILIZATION|url=https://academic.oup.com/brain/article-abstract/113/1/27/350190?redirectedFrom=fulltext|journal=Brain|volume=113|issue=1|pages=27–47|doi=10.1093/brain/113.1.27|issn=0006-8950}} 2. ^{{Cite journal|last=Kaisti|first=Kaike K.|last2=Långsjö|first2=Jaakko W.|last3=Aalto|first3=Sargo|last4=Oikonen|first4=Vesa|last5=Sipilä|first5=Hannu|last6=Teräs|first6=Mika|last7=Hinkka|first7=Susanna|last8=Metsähonkala|first8=Liisa|last9=Scheinin|first9=Harry|date=September 2003|title=Effects of Sevoflurane, Propofol, and Adjunct Nitrous Oxide on Regional Cerebral Blood Flow, Oxygen Consumption, and Blood Volume in Humans|url=https://insights.ovid.com/crossref?an=00000542-200309000-00015|journal=Anesthesiology|language=ENGLISH|volume=99|issue=3|pages=603–613|doi=10.1097/00000542-200309000-00015|issn=0003-3022}} 3. ^{{Cite journal|last=Jin|first=Tao|last2=Kim|first2=Seong-Gi|date=October 2008|title=Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation|url=https://linkinghub.elsevier.com/retrieve/pii/S1053811908007751|journal=NeuroImage|volume=43|issue=1|pages=1–9|doi=10.1016/j.neuroimage.2008.06.029|issn=1053-8119|pmc=2579763|pmid=18655837}} 4. ^{{Cite journal|last=Swain|first=R.A|last2=Harris|first2=A.B|last3=Wiener|first3=E.C|last4=Dutka|first4=M.V|last5=Morris|first5=H.D|last6=Theien|first6=B.E|last7=Konda|first7=S|last8=Engberg|first8=K|last9=Lauterbur|first9=P.C|date=April 2003|title=Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat|url=https://linkinghub.elsevier.com/retrieve/pii/S0306452202006644|journal=Neuroscience|volume=117|issue=4|pages=1037–1046|doi=10.1016/s0306-4522(02)00664-4|issn=0306-4522}} 5. ^{{Cite journal|last=Mandeville|first=Joseph B.|last2=Marota|first2=John J. A.|last3=Kosofsky|first3=Barry E.|last4=Keltner|first4=John R.|last5=Weissleder|first5=Ralph|last6=Rosen|first6=Bruce R.|last7=Weisskoff|first7=Robert M.|date=April 1998|title=Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation|journal=Magnetic Resonance in Medicine|volume=39|issue=4|pages=615–624|doi=10.1002/mrm.1910390415|issn=0740-3194}} 6. ^{{Cite journal|last=Derdeyn|first=C. P.|last2=Videen|first2=T. O.|last3=Yundt|first3=K. D.|last4=Fritsch|first4=S. M.|last5=Carpenter|first5=D. A.|last6=Grubb|first6=R. L.|last7=Powers|first7=W. J.|date=2002-03-01|title=Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited|url=https://academic.oup.com/brain/article/125/3/595/519085|journal=Brain|volume=125|issue=3|pages=595–607|doi=10.1093/brain/awf047|issn=0006-8950}} 7. ^{{Cite journal|last=Blamire|first=A. M.|last2=Anthony|first2=D. C.|last3=Rajagopalan|first3=B.|last4=Sibson|first4=N. R.|last5=Perry|first5=V. H.|last6=Styles|first6=P.|date=2000-11-01|title=Interleukin-1β-Induced Changes in Blood–Brain Barrier Permeability, Apparent Diffusion Coefficient, and Cerebral Blood Volume in the Rat Brain: A Magnetic Resonance Study|url=http://www.jneurosci.org/content/20/21/8153|journal=Journal of Neuroscience|volume=20|issue=21|pages=8153–8159|doi=10.1523/JNEUROSCI.20-21-08153.2000|issn=0270-6474|pmid=11050138}} 8. ^{{Cite journal|last=Grandin|first=Cécile B.|last2=Duprez|first2=Thierry P.|last3=Smith|first3=Anne M.|last4=Mataigne|first4=Fréderic|last5=Peeters|first5=André|last6=Oppenheim|first6=Catherine|last7=Cosnard|first7=Guy|date=May 2001|title=Usefulness of Magnetic Resonance–Derived Quantitative Measurements of Cerebral Blood Flow and Volume in Prediction of Infarct Growth in Hyperacute Stroke|journal=Stroke|volume=32|issue=5|pages=1147–1153|doi=10.1161/01.str.32.5.1147|issn=0039-2499}} 9. ^{{Cite journal|last=Østergaard|first=Leif|last2=Smith|first2=Donald F.|last3=Vestergaard-Poulsen|first3=Peter|last4=Hansen|first4=SørenB.|last5=Gee|first5=Antony D.|last6=Gjedde|first6=Albert|last7=Gyldensted|first7=Carsten|date=April 1998|title=Absolute Cerebral Blood Flow and Blood Volume Measured by Magnetic Resonance Imaging Bolus Tracking: Comparison with Positron Emission Tomography Values|journal=Journal of Cerebral Blood Flow & Metabolism|volume=18|issue=4|pages=425–432|doi=10.1097/00004647-199804000-00011|pmid=9538908|issn=0271-678X}} 10. ^{{Cite journal|last=Rosen|first=B. R.|last2=Belliveau|first2=J. W.|last3=Aronen|first3=H. J.|last4=Kennedy|first4=D.|last5=Buchbinder|first5=B. R.|last6=Fischman|first6=A.|last7=Gruber|first7=M.|last8=Glas|first8=J.|last9=Weisskoff|first9=R. M.|date=December 1991|title=Susceptibility contrast imaging of cerebral blood volume: Human experience|journal=Magnetic Resonance in Medicine|volume=22|issue=2|pages=293–299|doi=10.1002/mrm.1910220227|issn=0740-3194}} 11. ^{{Cite journal|last=Braun|first=H.|last2=Ferbert|first2=A.|last3=Stirner|first3=H.|last4=Weiller|first4=C.|last5=Ringelstein|first5=E. B.|last6=Buell|first6=U.|date=1988|title=Combined SPECT Imaging of Regional Cerebral Blood Flow (99mTc-HexamethylPropyleneamine Oxime, HMPAO) and Blood Volume (99mTc-RBC) to Assess Regional Cerebral Perfusion Reserve in Patients with Cerebrovascular Disease|journal=Nuklearmedizin|volume=27|issue=2|pages=51–56|doi=10.1055/s-0038-1629503|issn=0029-5566}} 12. ^{{Cite journal|last=Ito|first=Hiroshi|last2=Kanno|first2=Iwao|last3=Ibaraki|first3=Masanobu|last4=Hatazawa|first4=Jun|last5=Miura|first5=Shuichi|date=June 2003|title=Changes in Human Cerebral Blood Flow and Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography|journal=Journal of Cerebral Blood Flow & Metabolism|volume=23|issue=6|pages=665–670|doi=10.1097/01.wcb.0000067721.64998.f5|pmid=12796714|issn=0271-678X}} 13. ^{{Cite journal|last=Lassen|first=N. A.|date=June 1984|title=CEREBRAL BLOOD FLOW AND BLOOD VOLUME TOMOGRAPHY BY SPECT IN CEREBROVASCULAR DISEASE|url=https://insights.ovid.com/crossref?an=00002826-198406001-00256|journal=Clinical Neuropharmacology|language=ENGLISH|volume=7|pages=S283|doi=10.1097/00002826-198406001-00256|issn=0362-5664}} 14. ^{{Cite journal|last=Martin|first=W. R. Wayne|last2=Powers|first2=William J.|last3=Raichle|first3=Marcus E.|date=August 1987|title=Cerebral Blood Volume Measured with Inhaled C15O and Positron Emission Tomography|journal=Journal of Cerebral Blood Flow & Metabolism|volume=7|issue=4|pages=421–426|doi=10.1038/jcbfm.1987.85|pmid=3497162|issn=0271-678X}} 15. ^{{Cite journal|last=Adam|first=Jean-Fran??ois|last2=Elleaume|first2=H??l??ne|last3=Le Duc|first3=G??raldine|last4=Corde|first4=St??phanie|last5=Charvet|first5=Anne-Marie|last6=Tropr??s|first6=Ir??ne|last7=Le Bas|first7=Jean-Fran??ois|last8=Est??ve|first8=Fran??ois|date=April 2003|title=Absolute Cerebral Blood Volume and Blood Flow Measurements Based on Synchrotron Radiation Quantitative Computed Tomography|journal=Journal of Cerebral Blood Flow & Metabolism|pages=499–512|doi=10.1097/00004647-200304000-00014|issn=0271-678X}} 16. ^{{Cite journal|last=Sakai|first=Fumihiko|last2=Nakazawa|first2=Keiji|last3=Tazaki|first3=Yoshiaki|last4=Ishii|first4=Katsumi|last5=Hino|first5=Hidetada|last6=Igarashi|first6=Hisaka|last7=Kanda|first7=Tadashi|date=June 1985|title=Regional Cerebral Blood Volume and Hematocrit Measured in Normal Human Volunteers by Single-Photon Emission Computed Tomography|journal=Journal of Cerebral Blood Flow & Metabolism|volume=5|issue=2|pages=207–213|doi=10.1038/jcbfm.1985.27|pmid=3921557|issn=0271-678X}} 17. ^{{Cite journal|last=Wyatt|first=J. S.|last2=Cope|first2=M.|last3=Delpy|first3=D. T.|last4=Richardson|first4=C. E.|last5=Edwards|first5=A. D.|last6=Wray|first6=S.|last7=Reynolds|first7=E. O.|date=March 1990|title=Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy|journal=Journal of Applied Physiology|volume=68|issue=3|pages=1086–1091|doi=10.1152/jappl.1990.68.3.1086|pmid=2341336|issn=8750-7587}} 18. ^{{Cite journal|last=Donahue|first=Kathleen M.|last2=Krouwer|first2=Hendrikus G.J.|last3=Rand|first3=Scott D.|last4=Pathak|first4=Arvind P.|last5=Marszalkowski|first5=Cathy S.|last6=Censky|first6=Steven C.|last7=Prost|first7=Robert W.|date=2000|title=Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients|journal=Magnetic Resonance in Medicine|volume=43|issue=6|pages=845–853|doi=10.1002/1522-2594(200006)43:6<845::aid-mrm10>3.0.co;2-j|issn=0740-3194}} 19. ^{{Cite journal|last=AIZAWA|first=Shizuka|last2=SAKO|first2=Kazuhiro|last3=YONEMASU|first3=Yukichi|date=1990|title=Measurement of Cerebral Blood Flow, Cerebral Blood Volume, and Cerebral Capillary Permeability in Glioma-bearing Rats|url=https://www.jstage.jst.go.jp/article/nmc1959/30/2/30_2_113/_article|journal=Neurologia Medico-chirurgica|volume=30|issue=2|pages=113–118|doi=10.2176/nmc.30.113|issn=1349-8029}} 20. ^{{Cite journal|last=Hu|first=Chun-Hong|last2=Gao|first2=Xi|last3=Gan|first3=Wen-Juan|last4=Dai|first4=Qi-Chun|last5=Hu|first5=Su|last6=Sun|first6=Chun-Ming|last7=Liu|first7=Yun-Lian|last8=Wen|first8=Fang|last9=Li|first9=Ping|date=2015|title=Feasibility of tissue similarity map-based relative cerebral blood volume assessment in the evaluation of gliomas|url=http://www.neurologyindia.com/article.asp?issn=0028-3886;year=2015;volume=63;issue=4;spage=524;epage=530;aulast=Hu|journal=Neurology India|volume=63|issue=4|pages=524–30|doi=10.4103/0028-3886.162001|pmid=26238886|issn=0028-3886}} 21. ^{{Cite journal|last=Sugahara|first=T|last2=Korogi|first2=Y|last3=Kochi|first3=M|last4=Ikushima|first4=I|last5=Hirai|first5=T|last6=Okuda|first6=T|last7=Shigematsu|first7=Y|last8=Liang|first8=L|last9=Ge|first9=Y|date=December 1998|title=Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas.|journal=American Journal of Roentgenology|volume=171|issue=6|pages=1479–1486|doi=10.2214/ajr.171.6.9843274|pmid=9843274|issn=0361-803X}} 22. ^{{Cite journal|last=Aronen|first=H J|last2=Gazit|first2=I E|last3=Louis|first3=D N|last4=Buchbinder|first4=B R|last5=Pardo|first5=F S|last6=Weisskoff|first6=R M|last7=Harsh|first7=G R|last8=Cosgrove|first8=G R|last9=Halpern|first9=E F|date=April 1994|title=Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings.|journal=Radiology|volume=191|issue=1|pages=41–51|doi=10.1148/radiology.191.1.8134596|pmid=8134596|issn=0033-8419}} 23. ^{{Cite journal|last=Hu|first=L. S.|last2=Baxter|first2=L. C.|last3=Smith|first3=K. A.|last4=Feuerstein|first4=B. G.|last5=Karis|first5=J. P.|last6=Eschbacher|first6=J. M.|last7=Coons|first7=S. W.|last8=Nakaji|first8=P.|last9=Yeh|first9=R. F.|date=2009-03-01|title=Relative Cerebral Blood Volume Values to Differentiate High-Grade Glioma Recurrence from Posttreatment Radiation Effect: Direct Correlation between Image-Guided Tissue Histopathology and Localized Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Measurements|url=http://www.ajnr.org/content/30/3/552|journal=American Journal of Neuroradiology|volume=30|issue=3|pages=552–558|doi=10.3174/ajnr.A1377|issn=0195-6108|pmid=19056837}} 24. ^{{Cite journal|last=Paulson|first=Eric S.|last2=Schmainda|first2=Kathleen M.|date=November 2008|title=Comparison of Dynamic Susceptibility-weighted Contrast-enhanced MR Methods: Recommendations for Measuring Relative Cerebral Blood Volume in Brain Tumors|journal=Radiology|volume=249|issue=2|pages=601–613|doi=10.1148/radiol.2492071659|issn=0033-8419|pmc=2657863|pmid=18780827}} 25. ^{{Cite journal|last=Law|first=Meng|last2=Young|first2=Robert J.|last3=Babb|first3=James S.|last4=Peccerelli|first4=Nicole|last5=Chheang|first5=Sophie|last6=Gruber|first6=Michael L.|last7=Miller|first7=Douglas C.|last8=Golfinos|first8=John G.|last9=Zagzag|first9=David|date=May 2008|title=Gliomas: Predicting Time to Progression or Survival with Cerebral Blood Volume Measurements at Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging|journal=Radiology|volume=247|issue=2|pages=490–498|doi=10.1148/radiol.2472070898|issn=0033-8419|pmc=3774106|pmid=18349315}} 26. ^{{Cite journal|last=Grandin|first=Cécile B.|last2=Duprez|first2=Thierry P.|last3=Smith|first3=Anne M.|last4=Mataigne|first4=Fréderic|last5=Peeters|first5=André|last6=Oppenheim|first6=Catherine|last7=Cosnard|first7=Guy|date=May 2001|title=Usefulness of Magnetic Resonance–Derived Quantitative Measurements of Cerebral Blood Flow and Volume in Prediction of Infarct Growth in Hyperacute Stroke|journal=Stroke|volume=32|issue=5|pages=1147–1153|doi=10.1161/01.str.32.5.1147|issn=0039-2499}} 27. ^{{Cite journal|last=Di Piero|first=V.|last2=Perani|first2=D.|last3=Savi|first3=A.|last4=Gerundini|first4=P.|last5=Lenzi|first5=G. L.|last6=Fazio|first6=F.|date=June 1986|title=Sequential Assessment of Regional Cerebral Blood Flow, Regional Cerebral Blood Volume, and Blood—Brain Barrier in Focal Cerebral Ischemia: A Case Report|journal=Journal of Cerebral Blood Flow & Metabolism|volume=6|issue=3|pages=379–384|doi=10.1038/jcbfm.1986.62|pmid=3486873|issn=0271-678X}} 28. ^{{Cite journal|last=Sorensen|first=A. Gregory|last2=Copen|first2=William A.|last3=Østergaard|first3=Leif|last4=Buonanno|first4=Ferdinando S.|last5=Gonzalez|first5=R. Gilberto|last6=Rordorf|first6=Guy|last7=Rosen|first7=Bruce R.|last8=Schwamm|first8=Lee H.|last9=Weisskoff|first9=Robert M.|date=February 1999|title=Hyperacute Stroke: Simultaneous Measurement of Relative Cerebral Blood Volume, Relative Cerebral Blood Flow, and Mean Tissue Transit Time|journal=Radiology|volume=210|issue=2|pages=519–527|doi=10.1148/radiology.210.2.r99fe06519|pmid=10207439|issn=0033-8419}} 29. ^{{Cite journal|last=GRUBB|first=ROBERT L.|last2=RAICHLE|first2=MARCUS E.|last3=EICHLING|first3=JOHN O.|last4=TER-POGOSSIAN|first4=MICHEL M.|date=September 1974|title=The Effects of Changes in Pa CO 2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time|journal=Stroke|volume=5|issue=5|pages=630–639|doi=10.1161/01.str.5.5.630|issn=0039-2499}} 30. ^{{Cite journal|last=Todd|first=Nicholas V.|last2=Picozzi|first2=Piero|last3=Crockard|first3=H. Alan|date=June 1986|title=Quantitative Measurement of Cerebral Blood Flow and Cerebral Blood Volume after Cerebral Ischaemia|journal=Journal of Cerebral Blood Flow & Metabolism|volume=6|issue=3|pages=338–341|doi=10.1038/jcbfm.1986.57|pmid=3711160|issn=0271-678X}} |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。