请输入您要查询的百科知识:

 

词条 Draft:GFZF
释义

  1. Role in Cell Cycle Regulation

  2. Mechanism of Action

      Interaction between GFZF and MBP1    Chromosomal Localization of GFZF    GST Functionality  

  3. Control of MAPK Signaling

  4. Within-Species Incompatibility

  5. References

{{AFC submission|t||ts=20181215102345|u=Gfzfarticle|ns=118|demo=}}

GFZF (GST-containing FLYWCH Zinc Finger protein) is a Glutathione SH-transferase (GST) containing protein identified in Drosophila Melanogaster[1]. GFZF is a 1045 amino acid protein that possesses a zinc finger domain with a tandem array of four FLYWCH zinc finger motifs at its N-terminus, and the C-terminal domain shares a 46% homology with GST[1]. The gene that encodes GFZF maps to chromosome 3 at position 84C6[1]. In addition to being expressed through all stages of fly embryonic development, it localizes to the cytoplasm of fly cells[1]. Although the exact function of the FLYWCH motif is unknown, it is found in the chromatin associated Mod (mdg4) proteins that are part of the gypsy silencing complex[2]. GFZF has additionally been identified in screens for factors involved in transcriptional regulation, cell cycle regulation[3], DNA damage checkpoints[4], oxidative stress responses[5], control of RAS/mitogen-activated protein kinase (MAPK) signaling, organization of polycomb sequences[6], and speciation[7].

Role in Cell Cycle Regulation

GFZF has been shown to play a key role in cell cycle regulation in D. melanogaster, supported by a genome-wide RNA interference screen looking to identify G2/M checkpoint genes in Drosophila cells in which GFZF was a significant target of interest[4]. GFZF critically may respond to DNA damage by blocking cell proliferation through the dE2F2/RBF pathway[3]. Furthermore, GFZF can be a positive regulator of cell growth. Most notably, the GFZF transcriptionally regulates the Ras pathway, evidenced by the suppression of Ras phenotypes by loss-of-function alleles as GFZF[8].

The ability of GFZF to regulate cell cycle progression may be the reason for hybrid male inviabiilty in D. melanogaster and D. simulans hybrids, because these hybrid males display canonical cell cycle progression defects such as death at the late larval stage and degenerate imaginal discs[9]. This experiment suggests that a role of the D. simulans homolog of GFZF is to suppress proliferation on imaginal discs[10], preventing larvae from moving towards pupation. Additional GFZFsim knockdown experiments rescued the cell proliferation phenotype, namely proliferating S-phase cells, further supporting this hypothesis[10].

Mechanism of Action

Interaction between GFZF and MBP1

Cells coordinate processes required for survival and development through regulating RNA polymerase II-transcribed genes through transcription elements that bind to promoter regions[11]. One major element, Motif 1[12][13], is present in promoter regions of numerous Drosophila genes. M1BP is a factor that binds to thousands of genes, and M1BP-bound promoters tend to lack many elements canonically thought to be necessary for initiation, such as the TATA box[12]. GFZF is recruited by M1BP to promoters, and is a transcriptional coactivator with GST activity[1]. While GSTs have traditionally been studied for their role in cellular detoxification, they have also been implicated in signal transduction regulation[14], apoptosis inhibition[15], and oxidative stress responses[16].  

Chromosomal Localization of GFZF

Although older literature characterized GFZF as a primarily cytoplasmic protein[1], recent immunofluorescence microscopy experiments with fluorescent anti-GFZF antibodies have suggested that GFZF associates with chromosomes[17]. Both MBP1 and GFZF have similar localization patterns, supporting their co-localization at a variety of promoters[17]. Chromatin immunoprecipitation with exonuclease (ChIP-exo) confirmed that MBP1 and GFZF colocalize at many promoters[17]. To regulate cell cycle progression, GFZF associates with 22 out of 64 genes involved in the G2/M DNA damage checkpoint[17], including promoters of relevant factors (myt1, 140303e, and tefu)[4], thus controlling progression.

GST Functionality

Unusually, GFZF is a combination of zinc fingers and a GST domain[17]. This property was first discovered when it was observed to be able to bind to glutathione sepharose beads[1]. Mutations in the GST domain cause larval lethality, indicating its necessity for survival[17]. While not fully characterized, the GST activity can be important for gene expression – as GSTs generally protect cells from toxic native and foreign compounds[18], the GST domain may inhibit DNA damage at promoters. There is additionally evidence that the GST transcription factor can sense the redox state of the cell and allow cells to alter transcription or inhibit cell cycle progression in response to stressors[19].

A protein that suggests of GST-mediated regulated of cell events is Brf2. Brf2 a transcription factor that has a cysteine residue that, when oxidized, inhibits Brf2’s ability to bind to the TATA binding protein[20]. Furthermore, a small amount of hydrogen peroxide reduces the activity of Pol II in promoter-adjacent regions of genes[21]. Last, PrfA is a protein in pathogenic bacteria Listeria monocytogenes that is allosterically regulated by glutathione[22] – these intracellular control mechanisms may regulate GFZF function in response to chemical stressors, allowing for rapid cell cycle regulation and other downstream responses.

Control of MAPK Signaling

GFZF is respond for modulating mek, an upstream effector of MAPK, and PTP-ER expression via mRNA processing factors[8]. Upon GFZF knockdown, researchers observed a strong reduction in mek transcript levels, and the RASv12-induced hemocyte proliferation phenotype was substantially reduced, indicating that it may be acting as a positive transcription factor[8]. Alternatively, because FLYWCH domain proteins can repress miRNA expression in C. elegans, GFZF may be repressing the production of miRNA that targets mek transcripts[8]. By adding this extra dimension of regulatory control to the Ras/MAPK signaling pathway, GFZF may be an important regulatory element for downstream MAPK-dependent events.  

Within-Species Incompatibility

GFZF plays an important role in hybrid inviability[7][10]. Prune mutant D. melanogaster females crossed to males from a certain wild type Killer-of-prune strain cause inviable resulting male offspring[10]. Prune is an X-linked eye color gene, and Killer-of-prune (Kpn) is a single non-synonymous change in the awd gene[23]. Kpn is only lethal in combination with the prune mutation, but is rescued with the mutation of GFZF, as identified in a comprehensive genetic screen discover suppressors of this interaction[10]. There may be a few essential signaling pathways for dominant lethal interactions, as the screen isolated a total of 13 mutants that rescued viability and all mapped to GFZF[10].

References

1. ^{{Cite journal|date=2004-11-10|title=Identification and characterization of a novel Drosophila melanogaster glutathione S-transferase-containing FLYWCH zinc finger protein|url=https://www.sciencedirect.com/science/article/pii/S0378111904004676|journal=Gene|volume=342|issue=1|pages=49–56|doi=10.1016/j.gene.2004.07.043|pmid=15527965|issn=0378-1119|last1=Dai|first1=Mu-Shui|last2=Sun|first2=Xiao-Xin|last3=Qin|first3=Jun|last4=Smolik|first4=Sarah M.|last5=Lu|first5=Hua}}
2. ^{{Cite book|last=Pélisson|first=Alain|last2=Bucheton|first2=Alain|last3=Payen-Groschêne|first3=Geneviève|last4=Sarot|first4=Emeline|date=2004-03-01|title=Evidence for a piwi-Dependent RNA Silencing of the gypsy Endogenous Retrovirus by the Drosophila melanogaster flamenco Gene|url=http://www.genetics.org/content/166/3/1313|journal=Genetics|volume=166|issue=3|pages=1313–1321|doi=10.1534/genetics.166.3.1313|issn=1943-2631|pmid=15082550|pmc=1470774|bibcode=}}
3. ^{{Cite book|last=Frolov|first=Maxim V.|last2=Nicolay|first2=Brandon N.|last3=Rasheva|first3=Vanya I.|last4=Ambrus|first4=Aaron M.|date=2009-09-01|title=Mosaic Genetic Screen for Suppressors of the de2f1 Mutant Phenotype in Drosophila|url=http://www.genetics.org/content/183/1/79|journal=Genetics|volume=183|issue=1|pages=79–92|doi=10.1534/genetics.109.104661|issn=1943-2631|pmc=2746169|pmid=19546319|bibcode=}}
4. ^{{Cite journal|last=Perrimon|first=Norbert|last2=Kondo|first2=Shu|date=2011-01-04|title=A Genome-Wide RNAi Screen Identifies Core Components of the G2-M DNA Damage Checkpoint|url=http://stke.sciencemag.org/content/4/154/rs1|journal=Sci. Signal.|volume=4|issue=154|pages=rs1|doi=10.1126/scisignal.2001350|issn=1937-9145|pmid=21205937|pmc=3489265}}
5. ^{{Cite journal|last=Li|first=H.-M.|last2=Buczkowski|first2=G.|last3=Mittapalli|first3=O.|last4=Xie|first4=J.|last5=Wu|first5=J.|last6=Westerman|first6=R.|last7=Schemerhorn|first7=B. J.|last8=Murdock|first8=L. L.|last9=Pittendrigh|first9=B. R.|date=August 2008|title=Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress|journal=Insect Molecular Biology|volume=17|issue=4|pages=325–339|doi=10.1111/j.1365-2583.2008.00808.x|issn=1365-2583|pmid=18651915}}
6. ^{{Cite journal|last=Gonzalez|first=Inma|last2=Mateos-Langerak|first2=Julio|last3=Thomas|first3=Aubin|last4=Cheutin|first4=Thierry|last5=Cavalli|first5=Giacomo|date=2014-05-08|title=Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen|journal=Molecular Cell|volume=54|issue=3|pages=485–499|doi=10.1016/j.molcel.2014.03.004|issn=1097-4164|pmid=24703951}}
7. ^{{Cite journal|last=Malik|first=Harmit S.|last2=Kitzman|first2=Jacob O.|last3=Shendure|first3=Jay|last4=Cruz|first4=Aida Flor A. de la|last5=Hsieh|first5=Emily|last6=Frizzell|first6=Kimberly A.|last7=Cooper|first7=Jacob C.|last8=Baker|first8=EmilyClare P.|last9=Phadnis|first9=Nitin|date=2015-12-18|title=An essential cell cycle regulation gene causes hybrid inviability in Drosophila|url=http://science.sciencemag.org/content/350/6267/1552|journal=Science|volume=350|issue=6267|pages=1552–1555|doi=10.1126/science.aac7504|issn=1095-9203|pmid=26680200|pmc=4703311|bibcode=2015Sci...350.1552P}}
8. ^{{Cite journal|last=Therrien|first=Marc|last2=Lemieux|first2=Sébastien|last3=Lamarre|first3=Daniel|last4=Duchaine|first4=Jean|last5=Guenier|first5=Anne-Sophie|last6=Baril|first6=Caroline|last7=Lefrançois|first7=Martin|last8=Sahmi|first8=Malha|last9=Gendron|first9=Patrick|date=2014-03-18|title=A Functional Screen Reveals an Extensive Layer of Transcriptional and Splicing Control Underlying RAS/MAPK Signaling in Drosophila|journal=PLOS Biology|volume=12|issue=3|pages=e1001809|doi=10.1371/journal.pbio.1001809|issn=1545-7885|pmc=3958334|pmid=24643257}}
9. ^{{Cite journal|last=Dübendorfer|first=Andreas|last2=Sánchez|first2=Lucas|date=1983-01-01|title=Development of imaginal discs from lethal hybrids betweenDrosophila melanogaster andDrosophila mauritiana|journal=Wilhelm Roux's Archives of Developmental Biology|volume=192|issue=1|pages=48–50|doi=10.1007/BF00848770|pmid=28305335|issn=1432-041X}}
10. ^{{Cite journal|last=Cooper|first=Jacob C.|last2=Phadnis|first2=Nitin|date=2016-05-26|title=A genomic approach to identify hybrid incompatibility genes|journal=Fly|volume=10|issue=3|pages=142–148|doi=10.1080/19336934.2016.1193657|issn=1933-6934|pmc=4970527|pmid=27230814}}
11. ^{{Cite journal|last=Danino|first=Yehuda M.|last2=Even|first2=Dan|last3=Ideses|first3=Diana|last4=Juven-Gershon|first4=Tamar|date=August 2015|title=The core promoter: At the heart of gene expression|journal=Biochimica et Biophysica Acta|volume=1849|issue=8|pages=1116–1131|doi=10.1016/j.bbagrm.2015.04.003|issn=0006-3002|pmid=25934543}}
12. ^{{Cite journal|last=Ohler|first=Uwe|last2=Liao|first2=Guo-chun|last3=Niemann|first3=Heinrich|last4=Rubin|first4=Gerald M.|date=2002|title=Computational analysis of core promoters in the Drosophila genome|journal=Genome Biology|volume=3|issue=12|pages=RESEARCH0087|issn=1474-760X|pmid=12537576|pmc=151189}}
13. ^{{Cite journal|last=FitzGerald|first=Peter C.|last2=Sturgill|first2=David|last3=Shyakhtenko|first3=Andrey|last4=Oliver|first4=Brian|last5=Vinson|first5=Charles|date=2006|title=Comparative genomics of Drosophila and human core promoters|journal=Genome Biology|volume=7|issue=7|pages=R53|doi=10.1186/gb-2006-7-7-r53|issn=1474-760X|pmc=1779564|pmid=16827941}}
14. ^{{Cite journal|last=Adler|first=V.|last2=Yin|first2=Z.|last3=Fuchs|first3=S. Y.|last4=Benezra|first4=M.|last5=Rosario|first5=L.|last6=Tew|first6=K. D.|last7=Pincus|first7=M. R.|last8=Sardana|first8=M.|last9=Henderson|first9=C. J.|date=1999-03-01|title=Regulation of JNK signaling by GSTp|journal=The EMBO Journal|volume=18|issue=5|pages=1321–1334|doi=10.1093/emboj/18.5.1321|issn=0261-4189|pmc=1171222|pmid=10064598}}
15. ^{{Cite journal|last=Kamada|first=Kensaku|last2=Goto|first2=Shinji|last3=Okunaga|first3=Tomohiro|last4=Ihara|first4=Yoshito|last5=Tsuji|first5=Kentaro|last6=Kawai|first6=Yoshichika|last7=Uchida|first7=Koji|last8=Osawa|first8=Toshihiko|last9=Matsuo|first9=Takayuki|date=2004-12-01|title=Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products|journal=Free Radical Biology & Medicine|volume=37|issue=11|pages=1875–1884|doi=10.1016/j.freeradbiomed.2004.09.002|issn=0891-5849|pmid=15528046}}
16. ^{{Cite journal|last=Hayes|first=John D.|last2=Flanagan|first2=Jack U.|last3=Jowsey|first3=Ian R.|date=2005|title=Glutathione transferases|journal=Annual Review of Pharmacology and Toxicology|volume=45|pages=51–88|doi=10.1146/annurev.pharmtox.45.120403.095857|issn=0362-1642|pmid=15822171}}
17. ^{{Cite journal|last=Baumann|first=Douglas G.|last2=Dai|first2=Mu-Shui|last3=Lu|first3=Hua|last4=Gilmour|first4=David S.|date=2018-01-29|title=GFZF, a Glutathione S-Transferase Protein Implicated in Cell Cycle Regulation and Hybrid Inviability, Is a Transcriptional Coactivator|journal=Molecular and Cellular Biology|volume=38|issue=4|doi=10.1128/MCB.00476-17|issn=0270-7306|pmc=5789030|pmid=29158293}}
18. ^{{Cite journal|last=Hayes|first=John D.|last2=Flanagan|first2=Jack U.|last3=Jowsey|first3=Ian R.|date=2005|title=Glutathione transferases|journal=Annual Review of Pharmacology and Toxicology|volume=45|pages=51–88|doi=10.1146/annurev.pharmtox.45.120403.095857|issn=0362-1642|pmid=15822171}}
19. ^{{Cite journal|last=Brigelius-Flohé|first=Regina|last2=Flohé|first2=Leopold|date=2011-10-15|title=Basic principles and emerging concepts in the redox control of transcription factors|journal=Antioxidants & Redox Signaling|volume=15|issue=8|pages=2335–2381|doi=10.1089/ars.2010.3534|issn=1557-7716|pmc=3166203|pmid=21194351}}
20. ^{{Cite journal|last=Gouge|first=Jerome|last2=Satia|first2=Karishma|last3=Guthertz|first3=Nicolas|last4=Widya|first4=Marcella|last5=Thompson|first5=Andrew James|last6=Cousin|first6=Pascal|last7=Dergai|first7=Oleksandr|last8=Hernandez|first8=Nouria|last9=Vannini|first9=Alessandro|date=2015-12-03|title=Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2|journal=Cell|volume=163|issue=6|pages=1375–1387|doi=10.1016/j.cell.2015.11.005|issn=1097-4172|pmc=4671959|pmid=26638071}}
21. ^{{Cite journal|last=Nilson|first=Kyle A.|last2=Lawson|first2=Christine K.|last3=Mullen|first3=Nicholas J.|last4=Ball|first4=Christopher B.|last5=Spector|first5=Benjamin M.|last6=Meier|first6=Jeffery L.|last7=Price|first7=David H.|date=2017-11-02|title=Oxidative stress rapidly stabilizes promoter-proximal paused Pol II across the human genome|journal=Nucleic Acids Research|volume=45|issue=19|pages=11088–11105|doi=10.1093/nar/gkx724|issn=1362-4962|pmc=5737879|pmid=28977633}}
22. ^{{Cite journal|last=Reniere|first=Michelle L.|last2=Whiteley|first2=Aaron T.|last3=Hamilton|first3=Keri L.|last4=John|first4=Sonya M.|last5=Lauer|first5=Peter|last6=Brennan|first6=Richard G.|last7=Portnoy|first7=Daniel A.|date=2015-01-08|title=Glutathione activates virulence gene expression of an intracellular pathogen|journal=Nature|volume=517|issue=7533|pages=170–173|doi=10.1038/nature14029|issn=1476-4687|pmc=4305340|pmid=25567281|bibcode=2015Natur.517..170R}}
23. ^{{Cite journal|last=Sturtevant|first=A. H.|date=January 1956|title=A Highly Specific Complementary Lethal System in Drosophila Melanogaster|journal=Genetics|volume=41|issue=1|pages=118–123|issn=0016-6731|pmc=1209758|pmid=17247604}}
随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/29 12:18:36