请输入您要查询的百科知识:

 

词条 Draft:Graphical perception
释义

  1. References

  2. External links

{{AFC submission|d|nn|u=Windsparrow|ns=118|decliner=Robert McClenon|declinets=20180609172812|ts=20180609151108}} {{AFC comment|1=This draft appears to be about work by William Cleveland and Robert McGill. It does not establish the notability of their work, because that should involve describing how their work has been cited by other scholars.

Fix reference error. Robert McClenon (talk) 17:28, 9 June 2018 (UTC)}}


Graphical perception is the human capacity for visually interpreting information on graphs and charts. Both quantitative and qualitative information can be said to be encoded into the image, and the human capacity to interpret it is sometimes called decoding.[1] The importance of human graphical perception, what we discern easily versus what our brains have more difficulty decoding, is fundamental to good statistical graphics design, where clarity, transparency, accuracy and precision in data display and interpretation are essential for understanding the translation of data in a graph to clarify and interpret the science.[2][3][4][5][6][7]

Graphical perception is achieved in dimensions or steps of discernment by:

  • detection : recognition of geometry which encodes physical values
  • assembly : grouping of detected symbol elements; discerning overall patterns in data
  • estimation : assessment of relative magnitudes of two physical values.

Cleveland and McGill's experiments[1] to elucidate the graphical elements humans detect most accurately is a fundamental component of good statistical graphics design principles.[2][3][5][6][8][9][10][11][12] See external link [1] for further description and picture of these elements ordered from human perception's best to worst. In practical terms, graphs displaying relative position on a common scale most accurately are most effective. A graph type that utilizes this element is the dot plot. Conversely, angles are perceived with less accuracy; an example is the pie chart. Humans do not naturally order color hues. Only a limited number of hues can be discriminated in one graphic.

Graphic designs that utilize visual pre-attentive processing in the graph design's assembly is why a picture can be worth a thousand words by using the brain's ability to perceive patterns. Not all graphs are designed to consider pre-attentive processing. For example in the attached figure, a graphic design feature, table look-up, requires the brain to work harder and take longer to decode than if the graph utilizes our ability to discern patterns.[3]

Graphic design that readily answers the scientific questions of interest will include appropriate estimation. Details for choosing the appropriate graph type for continuous and categorical data and for grouping have been described.[6][13] Graphics principles for accuracy, clarity and transparency have been detailed[2][3][4][14] and key elements summarized.[15]

References

1. ^{{Cite journal|last=Cleveland|first=William|last2=McGill|first2=Robert|date=1984|title=Graphical Perception and Graphical Methods for Analyzing Scientific Data|url=https://www.jstor.org/stable/2288400|journal=Journal of the American Statistical Association|volume=79|pages=531-544|via=}}
2. ^{{Cite book|title=Visualizing Data|last=Cleveland|first=William|publisher=Hobart Press|year=1993|isbn=0-9634884-0-6|location=Summit, New Jersey|pages=}}
3. ^{{Cite book|title=The elements of graphing data|last=Cleveland|first=William|publisher=Hobart Press|year=1994|isbn=0-9634884-1-4|location=Summit, New Jersey|pages=}}
4. ^{{Cite book|title=The Visual Display of Quantitative Information|last=Tufte|first=Edward|publisher=Graphics Press|year=2001|isbn=1930824130|location=Cheshire, Connecticut|pages=}}
5. ^{{Cite web|url=http://data.vanderbilt.edu/fh/talks/RCTGraphics/graphscourse.pdf|title=PRINCIPLES OF GRAPH CONSTRUCTION|last=Harrell, Jr|first=Frank|date=April 24, 2017|website=Vanderbilt|via=|archive-url=|archive-date=|dead-url=|access-date=June 9, 2018}}
6. ^{{Cite journal|last=Duke|first=Susan|last2=Bancken|first2=Fabrice|last3=Crowe|first3=Brenda|last4=Soup|first4=Mat|last5=Botsis|first5=Taxiarchis|last6=Forshee|first6=Richard|date=2015|title=Seeing is believing: good graphic design principles for medical research|url=https://doi.org/10.1002/sim.6549|journal=Statistics in Medicine|volume=34|pages=3040-3059|via=}}
7. ^{{Cite journal|last=Angra|first=Aakanksha|last2=Gardner|first2=Stephanie|date=2017|title=Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology|url=https://www.lifescied.org/doi/pdf/10.1187/cbe.16-08-0245|journal=CBE—Life Sciences Education|volume=16|pages=1-15|via=}}
8. ^{{Cite journal|last=Cleveland|first=William|last2=McGill|first2=Robert|date=1985|title=Graphical Perception and Graphical Methods for Analyzing Scientific Data|url=http://science.sciencemag.org/content/229/4716/828/tab-pdf|journal=Science|volume=229|pages=828-833|via=}}
9. ^{{Cite book|title=Creating More Effective Graphs|last=Robbins|first=Naomi|publisher=John Wiley & Sons|year=2005|isbn=0985911123|location=Hoboken, NJ|pages=47-62}}
10. ^{{Cite journal|last=Carswell|first=C. Melody|date=1992|title=Choosing Specifiers: An Evaluation of the Basic Tasks Model of Graphical Perception|url=http://journals.sagepub.com/doi/abs/10.1177/001872089203400503|journal=Human Factors: The Journal of the Human Factors and Ergonomics Society|volume=34|pages=535-554|via=}}
11. ^{{Cite journal|last=Hollands|first=J. G.|last2=Spence|first2=Ian|date=1992|title=Judgments of Change and Proportion in Graphical Perception|url=http://journals.sagepub.com/doi/abs/10.1177/001872089203400306|journal=Human Factors: The Journal of the Human Factors and Ergonomics Society|volume=34|pages=313-334|via=}}
12. ^{{Cite web|url=http://flowingdata.com/2010/08/26/rule-2-explain-your-encodings/|title=Graph Design Rule #2: Explain your encodings|last=|first=|date=|website=Flowing Data|archive-url=|archive-date=|dead-url=|access-date=June 9, 2018}}
13. ^{{Cite web|url=https://www.ctspedia.org/do/view/CTSpedia/SelectRightGraph|title=Select the Right Graph|last=Bancken|first=Fabrice|date=September 6, 2012|website=CTSpedia Safety Graphics Home|archive-url=|archive-date=|dead-url=|access-date=June 10, 2018}}
14. ^{{Cite web|url=http://biostat.mc.vanderbilt.edu/wiki/Main/RCTGraphics|title=Graphics for Clinical Trials|last=Harrell, Jr|first=Frank|date=April 24, 2017|website=Vanderbilt Dept of Biostatistics|archive-url=|archive-date=|dead-url=|access-date=June 10, 2018}}
15. ^{{Cite web|url=https://www.ctspedia.org/do/view/CTSpedia/BestPractices|title=Best Practices Recommendations|last=Lane|first=Peter|last2=Duke|first2=Susan|date=Aug 12, 2012|website=CTSpedia Safety Graphics Home|archive-url=|archive-date=|dead-url=|access-date=June 10, 2018}}

External links

  • A [https://rpubs.com/greddi/GR-DV-Perception-essay brief description and picture of Cleveland and McGill's nine graphical elements]
  • [https://priceonomics.com/how-william-cleveland-turned-data-visualization/ "How William Cleveland Turned Data Visualization Into a Science"] (2016) from Priceonomics.com
  • John Rauser's 2016 presentation, "[https://www.youtube.com/watch?v=fSgEeI2Xpdc How Humans See Data]" at Velocity Amsterdam. Describes how good visualizations optimize for the human visual system
  • Michael Friendly's Gallery of Data Visualization: The Best and Worst of Statistical Graphics

To add when putting into mainspace: Category: Cognition

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 22:12:59