请输入您要查询的百科知识:

 

词条 Draft:Host response to cancer therapy
释义

  1. Host response to cancer therapy

  2. Background

  3. Host response to different treatment modalities for cancer

      Host response to chemotherapy    Host response to radiation therapy    Host response to anti-angiogenic drugs    Host response to surgery  

  4. Clinical implications

  5. References

{{AFC submission|d|essay|u=Nili Dahan|ns=118|decliner=Praxidicae|declinets=20190303151905|ts=20190303091346}} {{AFC submission|d|essay|u=Nili Dahan|ns=118|decliner=AngusWOOF|declinets=20190225223903|reason2=context|small=yes|ts=20190225202646}} {{AFC comment|1=Wikipedia is not for publishing research papers or abstracts. NOTJOURNAL AngusWOOF (barksniff) 22:39, 25 February 2019 (UTC)}}

Host response to cancer therapy

The host response to cancer therapy is defined as a physiological response of the non-malignant cells of the body (also known as host cells) to a specific cancer therapy. The response is therapy-specific, occuring independently of cancer type or stage.

Background

All cancer treatment modalities (e.g., chemotherapy, targeted drugs, radiation and surgery) trigger systemic and local effects in the treated subject (i.e., the host). These include a rapid elevation in the levels of circulating cytokines, chemokines, growth factors and enzymes accompanied by acute mobilization and tumor homing of bone-marrow derived cells. These therapy-induced effects have the potential to facilitate tumor growth and spread, counteracting the beneficial effects of therapy. Thus, the host response to cancer therapy creates a paradoxical situation in which the desired therapeutic effect of treatment is reduced by its side effect on host cells. The balance between these two opposing activities determines the overall efficacy and outcome of treatment.[1][2][3][4][5]

Host response to different treatment modalities for cancer

Host response to chemotherapy

Chemotherapies, including alkylating agents, microtubule inhibitors, antimetabolites and antibiotics, represent a major systemic therapeutic modality for many cancers. These agents induce death in rapidly dividing cells thus targeting tumor cells, but at the same time damaging healthy tissue. Consequently, non-malignant host cells activate wound healing and inflammatory mechanisms to repair chemotherapy-induced damage. These repair mechanisms have the potential to exacerbate tumor promoting processes such as angiogenesis and metastasis.[1][2][6] In mouse tumor models, different chemotherapy types induce a rapid mobilization of circulating endothelial progenitor cells that home to the tumor site where they promote angiogenesis.[7] In addition, a variety of immune cell types, such as myeloid progenitors[8] [9]  and macrophages[10], are recruited to the tumor site in a chemotherapy-dependent manner, an effect that enhances metastasis.

Host response to radiation therapy

Radiotherapy is a well-established treatment modality for several cancer types. However, relapses after radiotherapy are often more aggressive and associated with poor prognosis. Cumulative evidence shows that the host response to radiotherapy is a contributing factor to this effect. Tumors implanted in pre-irradiated tissue grow with slower kinetics, however, paradoxically exhibit enhanced invasive and metastatic properties, a phenomenon known as the “tumor bed effect”.[11][12] This enhanced aggressiveness is attributed to radiation-induced modifications of the tumor microenvironment, including enhanced angiogenesis[13] and recruitment of pro-metastatic bone marrow cells[14][15][16] and macrophages[17][18][19][20].

Host response to anti-angiogenic drugs

Anti-angiogenic drugs (or angiogenesis inhibitors) target the blood vessels required for tumor survival. The rationale behind this strategy is to starve the tumor of oxygen and nutrients, limiting its ability to grow. However, tumor hypoxia that ensues activates a range of compensatory mechanisms that sustain vascularization, leading to resistance to the anti-angiogenic drug.[21][22] Many of these compensatory mechanisms involve host cells. For example, treating tumor-bearing mice with vascular-disrupting agents (that specifically target tumor-associated vessels) triggers an acute mobilization of circulating endothelial progenitor cells that home to tumor margins where they facilitate revascularization.[23] In addition, various types of pro-angiogenic bone marrow-derived cells such as myeloid-derived suppressor cells[24][25][26], tumor-associated macrophages[27], and TIE2-expressing monocytes[28] contribute to therapy resistance. In mouse tumor models, anti-angiogenic therapy causes an elevation in tumor-promoting cytokines and growth factors that in turn augment the invasive and metastatic potential of tumors.[29][30][31]

Host response to surgery

Surgical resection of a tumor is one of the primary treatment modalities for cancer and can be curative especially for patients with early disease. However, there is evidence that tumor resection generates a permissive environment for tumor growth, in part, via host-mediated processes. As part of the wound healing process, surgical tissue trauma is rapidly followed by a cascade of inflammatory processes.[1][32] Many of the growth factors, cytokines, extracellular matrix-modifying enzymes, and immune cells released during this process may also promote proliferation of residual tumor cells, angiogenesis and metastasis. For example, lungs are more prone to metastatic seeding after a surgical incision in the abdominal region of mice. This effect is due to increased expression and activity of lysyl oxidase (LOX), an extracellular matrix remodeling enzyme produced at the hypoxic surgical site.[33] In clinical settings, elevated levels of circulating endothelial progenitor cells, bone marrow-derived cells as well as circulating factors with known roles in angiogenesis and tumor progression have been reported in response to major surgery in comparison to minimal surgery.[34][35][36]

Clinical implications

Characterizing the host response to cancer therapy in patients has clinical implications especially in the field of personalized medicine (also known as precision medicine) and biomarker discovery. Experimental studies have shown that combining conventional cancer therapies with agents that selectively block therapy-induced factors improves treatment efficacies.[1]

References

1. ^{{Cite journal|last=Shaked|first=Y|date=2016|title=Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects|url=http://www.nature.com/articles/nrclinonc.2016.57|journal=Nature Reviews Clinical Oncology|language=en|volume=13|issue=10|pages=611–626|doi=10.1038/nrclinonc.2016.57|issn=1759-4774|via=}}
2. ^{{Cite journal|last=Daenen|first=L G M|last2=Houthuijzen|first2=J M|last3=Cirkel|first3=G A|last4=Roodhart|first4=J M L|last5=Shaked|first5=Y|last6=Voest|first6=E E|date=2014|title=Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies|url=http://www.nature.com/articles/onc201394|journal=Oncogene|language=en|volume=33|issue=11|pages=1341–1347|doi=10.1038/onc.2013.94|issn=0950-9232|via=}}
3. ^{{Cite journal|last=Ebos|first=J. M. L.|date=2015|title=Prodding the Beast: Assessing the Impact of Treatment-Induced Metastasis|url=http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-15-0308|journal=Cancer Research|language=en|volume=75|issue=17|pages=3427–3435|doi=10.1158/0008-5472.CAN-15-0308|issn=0008-5472|via=}}
4. ^{{Cite journal|last=Beyar-Katz|first=O|last2=Shaked|first2=Y|date=2015|title=Host effects contributing to cancer therapy resistance|url=https://linkinghub.elsevier.com/retrieve/pii/S1368764614000806|journal=Drug Resistance Updates|language=en|volume=19|pages=33–42|doi=10.1016/j.drup.2014.12.002|via=}}
5. ^{{Cite journal|last=Voloshin|first=T|last2=Voest|first2=E|last3=Shaked|first3=Y|date=2013|title=The host immunological response to cancer therapy: An emerging concept in tumor biology|url=https://linkinghub.elsevier.com/retrieve/pii/S0014482713001158|journal=Experimental Cell Research|language=en|volume=319|issue=11|pages=1687–1695|doi=10.1016/j.yexcr.2013.03.007|via=}}
6. ^{{Cite journal|last=Karagiannis|first=G. S.|last2=Condeelis|first2=J. S.|last3=Oktay|first3=M. H.|date=2018|title=Chemotherapy-induced metastasis: mechanisms and translational opportunities|url=http://link.springer.com/10.1007/s10585-017-9870-x|journal=Clinical & Experimental Metastasis|language=en|volume=35|issue=4|pages=269–284|doi=10.1007/s10585-017-9870-x|issn=0262-0898|pmc=6035114|pmid=29307118|via=}}
7. ^{{Cite journal|last=Shaked|first=Y|last2=Henke|first2=E|last3=Roodhart|first3=J. M.L.|last4=Mancuso|first4=P|last5=Langenberg|first5=M. H.G.|last6=Colleoni|first6=M|last7=Daenen|first7=L. G.|last8=Man|first8=S|last9=Xu|first9=P|date=2008|title=Rapid Chemotherapy-Induced Acute Endothelial Progenitor Cell Mobilization: Implications for Antiangiogenic Drugs as Chemosensitizing Agents|url=https://linkinghub.elsevier.com/retrieve/pii/S1535610808002559|journal=Cancer Cell|language=en|volume=14|issue=3|pages=263–273|doi=10.1016/j.ccr.2008.08.001|pmc=2565587|pmid=18772115|via=}}
8. ^{{Cite journal|last=Chang|first=Y. S|last2=Jalgaonkar|first2=S. P.|last3=Middleton|first3=J. D.|last4=Hai|first4=T|date=2017|title=Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis|url=http://www.pnas.org/lookup/doi/10.1073/pnas.1700455114|journal=Proceedings of the National Academy of Sciences|language=en|volume=114|issue=34|pages=E7159–E7168|doi=10.1073/pnas.1700455114|issn=0027-8424|pmc=5576783|pmid=28784776|via=}}
9. ^{{Cite journal|last=Gingis-Velitski|first=S.|last2=Loven|first2=D.|last3=Benayoun|first3=L.|last4=Munster|first4=M.|last5=Bril|first5=R.|last6=Voloshin|first6=T.|last7=Alishekevitz|first7=D.|last8=Bertolini|first8=F.|last9=Shaked|first9=Y.|date=2011|title=Host Response to Short-term, Single-Agent Chemotherapy Induces Matrix Metalloproteinase-9 Expression and Accelerates Metastasis in Mice|url=http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-11-0629|journal=Cancer Research|language=en|volume=71|issue=22|pages=6986–6996|doi=10.1158/0008-5472.CAN-11-0629|issn=0008-5472|via=}}
10. ^{{Cite journal|last=Karagiannis|first=G. S.|last2=Pastoriza|first2=J. M.|last3=Wang|first3=Y|last4=Harney|first4=A. S.|last5=Entenberg|first5=D|last6=Pignatelli|first6=J|last7=Sharma|first7=V. P.|last8=Xue|first8=E. A.|last9=Cheng|first9=E|date=2017|title=Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism|url=http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aan0026|journal=Science Translational Medicine|language=en|volume=9|issue=397|pages=eaan0026|doi=10.1126/scitranslmed.aan0026|issn=1946-6234|pmc=5592784|pmid=28679654|via=}}
11. ^{{Cite journal|last=Arnold|first=K. M|last2=Flynn|first2=N. J|last3=Raben|first3=A|last4=Romak|first4=L|last5=Yu|first5=Y|last6=Dicker|first6=A. P|last7=Mourtada|first7=F|last8=Sims-Mourtada|first8=J|date=2018|title=The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules|url=http://journals.sagepub.com/doi/10.1177/1179064418761639|journal=Cancer Growth and Metastasis|language=en|volume=11|pages=117906441876163|doi=10.1177/1179064418761639|issn=1179-0644|pmc=5846913|pmid=29551910|via=}}
12. ^{{Cite journal|last=Kuonen|first=F.|last2=Secondini|first2=C.|last3=Ruegg|first3=C.|date=2012|title=Molecular Pathways: Emerging Pathways Mediating Growth, Invasion, and Metastasis of Tumors Progressing in an Irradiated Microenvironment|url=http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-11-1758|journal=Clinical Cancer Research|language=en|volume=18|issue=19|pages=5196–5202|doi=10.1158/1078-0432.CCR-11-1758|issn=1078-0432|via=}}
13. ^{{Cite journal|last=Sofia Vala|first=I|last2=Martins|first2=L. R.|last3=Imaizumi|first3=N|last4=Nunes|first4=R. J.|last5=Rino|first5=J|last6=Kuonen|first6=F|last7=Carvalho|first7=L. M.|last8=Rüegg|first8=C|last9=Grillo|first9=I. M|date=2010|editor-last=Gartel|editor-first=Andrei L.|title=Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis|url=https://dx.plos.org/10.1371/journal.pone.0011222|journal=PLoS ONE|language=en|volume=5|issue=6|pages=e11222|doi=10.1371/journal.pone.0011222|issn=1932-6203|pmc=2888592|pmid=20574535|via=}}
14. ^{{Cite journal|last=Ahn|first=G. O|last2=Brown|first2=J. M|date=2008|title=Matrix Metalloproteinase-9 Is Required for Tumor Vasculogenesis but Not for Angiogenesis: Role of Bone Marrow-Derived Myelomonocytic Cells|url=https://linkinghub.elsevier.com/retrieve/pii/S1535610808000020|journal=Cancer Cell|language=en|volume=13|issue=3|pages=193–205|doi=10.1016/j.ccr.2007.11.032|pmc=2967441|pmid=18328424|via=}}
15. ^{{Cite journal|last=Kioi|first=M|last2=Vogel|first2=H|last3=Schultz|first3=G|last4=Hoffman|first4=R. M.|last5=Harsh|first5=G. R.|last6=Brown|first6=J. M|date=2010|title=Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice|url=http://www.jci.org/articles/view/40283|journal=Journal of Clinical Investigation|language=en|volume=120|issue=3|pages=694–705|doi=10.1172/JCI40283|issn=0021-9738|pmc=2827954|pmid=20179352|via=}}
16. ^{{Cite journal|last=Kuonen|first=F.|last2=Laurent|first2=J.|last3=Secondini|first3=C.|last4=Lorusso|first4=G.|last5=Stehle|first5=J.-C.|last6=Rausch|first6=T.|last7=Faes-van't Hull|first7=E.|last8=Bieler|first8=G.|last9=Alghisi|first9=G.-C.|date=2012|title=Inhibition of the Kit Ligand/c-Kit Axis Attenuates Metastasis in a Mouse Model Mimicking Local Breast Cancer Relapse after Radiotherapy|url=http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-11-3028|journal=Clinical Cancer Research|language=en|volume=18|issue=16|pages=4365–4374|doi=10.1158/1078-0432.CCR-11-3028|issn=1078-0432|via=}}
17. ^{{Cite journal|last=Timaner|first=M|last2=Bril|first2=R|last3=Kaidar-Person|first3=O|last4=Rachman-Tzemah|first4=C|last5=Alishekevitz|first5=D|last6=Kotsofruk|first6=R|last7=Miller|first7=V|last8=Nevelsky|first8=A|last9=Daniel|first9=S|date=2015|title=Dequalinium blocks macrophage-induced metastasis following local radiation|url=http://www.oncotarget.com/fulltext/4826|journal=Oncotarget|language=en|volume=6|issue=29|pages=|doi=10.18632/oncotarget.4826|issn=1949-2553|pmc=4695007|pmid=26348470|via=}}
18. ^{{Cite journal|last=Chiang|first=Chi-Shiun|last2=Fu|first2=Sheng Yung|last3=Wang|first3=Shu-Chi|last4=Yu|first4=Ching-Fang|last5=Chen|first5=Fang-Hsin|last6=Lin|first6=Chi-Min|last7=Hong|first7=Ji-Hong|date=2012|title=Irradiation Promotes an M2 Macrophage Phenotype in Tumor Hypoxia|url=http://journal.frontiersin.org/article/10.3389/fonc.2012.00089/abstract|journal=Frontiers in Oncology|volume=2|doi=10.3389/fonc.2012.00089|issn=2234-943X|pmc=3412458|pmid=22888475}}
19. ^{{Cite journal|last=Okubo|first=Makiko|last2=Kioi|first2=Mitomu|last3=Nakashima|first3=Hideyuki|last4=Sugiura|first4=Kei|last5=Mitsudo|first5=Kenji|last6=Aoki|first6=Ichiro|last7=Taniguchi|first7=Hideki|last8=Tohnai|first8=Iwai|date=2016|title=M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation|url=http://www.nature.com/articles/srep27548|journal=Scientific Reports|language=en|volume=6|issue=1|pages=|doi=10.1038/srep27548|issn=2045-2322|pmc=4897643|pmid=27271009|via=}}
20. ^{{Cite journal|last=Seifert|first=L|last2=Werba|first2=G|last3=Tiwari|first3=S|last4=Giao Ly|first4=N. N|last5=Nguy|first5=S|last6=Alothman|first6=S|last7=Alqunaibit|first7=D|last8=Avanzi|first8=A|last9=Daley|first9=D|date=2016|title=Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice|url=https://linkinghub.elsevier.com/retrieve/pii/S0016508516002912|journal=Gastroenterology|language=en|volume=150|issue=7|pages=1659–1672.e5|doi=10.1053/j.gastro.2016.02.070|pmc=4909514|pmid=26946344|via=}}
21. ^{{Cite journal|last=Ebos|first=J. M. L.|last2=Kerbel|first2=R. S.|date=2011|title=Antiangiogenic therapy: impact on invasion, disease progression and metastasis|url=http://www.nature.com/articles/nrclinonc.2011.21|journal=Nature Reviews Clinical Oncology|language=en|volume=8|issue=4|pages=210–221|doi=10.1038/nrclinonc.2011.21|issn=1759-4774|pmc=4540336|pmid=21364524|via=}}
22. ^{{Cite journal|last=Ebos|first=J. M. L.|last2=Lee|first2=C. R.|last3=Kerbel|first3=R. S.|date=2009|title=Tumor and Host-Mediated Pathways of Resistance and Disease Progression in Response to Antiangiogenic Therapy|url=http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-09-0095|journal=Clinical Cancer Research|language=en|volume=15|issue=16|pages=5020–5025|doi=10.1158/1078-0432.CCR-09-0095|issn=1078-0432|pmc=2743513|pmid=19671869|via=}}
23. ^{{Cite journal|last=Shaked|first=Y.|display-authors=et al.|date=2006|title=Therapy-Induced Acute Recruitment of Circulating Endothelial Progenitor Cells to Tumors|url=http://www.sciencemag.org/cgi/doi/10.1126/science.1127592|journal=Science|language=en|volume=313|issue=5794|pages=1785–1787|doi=10.1126/science.1127592|issn=0036-8075|via=}}
24. ^{{Cite journal|last=Shojaei|first=F|last2=Wu|first2=X|last3=Malik|first3=A. K|last4=Zhong|first4=C|last5=Baldwin|first5=M. E|last6=Schanz|first6=S|last7=Fuh|first7=G|last8=Gerber|first8=H-P|last9=Ferrara|first9=N|date=2007|title=Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells|url=http://www.nature.com/articles/nbt1323|journal=Nature Biotechnology|language=en|volume=25|issue=8|pages=911–920|doi=10.1038/nbt1323|issn=1087-0156|via=}}
25. ^{{Cite journal|last=Shojaei|first=F.|last2=Wu|first2=X.|last3=Qu|first3=X.|last4=Kowanetz|first4=M.|last5=Yu|first5=L.|last6=Tan|first6=M.|last7=Meng|first7=Y. G.|last8=Ferrara|first8=N.|date=2009|title=G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models|url=http://www.pnas.org/cgi/doi/10.1073/pnas.0902280106|journal=Proceedings of the National Academy of Sciences|language=en|volume=106|issue=16|pages=6742–6747|doi=10.1073/pnas.0902280106|issn=0027-8424|pmc=2665197|pmid=19346489|via=}}
26. ^{{Cite journal|last=Shojaei|first=F|last2=Wu|first2=X|last3=Zhong|first3=C|last4=Yu|first4=L|last5=Liang|first5=X-H|last6=Yao|first6=J|last7=Blanchard|first7=D|last8=Bais|first8=C|last9=Peale|first9=F. V.|date=2007|title=Bv8 regulates myeloid-cell-dependent tumour angiogenesis|url=http://www.nature.com/articles/nature06348|journal=Nature|language=en|volume=450|issue=7171|pages=825–831|doi=10.1038/nature06348|issn=0028-0836|via=}}
27. ^{{Cite journal|last=Zhang|first=W.|last2=Zhu|first2=X.-D.|last3=Sun|first3=H.-C.|last4=Xiong|first4=Y.-Q.|last5=Zhuang|first5=P.-Y.|last6=Xu|first6=H.-X.|last7=Kong|first7=L.-Q.|last8=Wang|first8=L.|last9=Wu|first9=W.-Z.|date=2010|title=Depletion of Tumor-Associated Macrophages Enhances the Effect of Sorafenib in Metastatic Liver Cancer Models by Antimetastatic and Antiangiogenic Effects|url=http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-09-2904|journal=Clinical Cancer Research|language=en|volume=16|issue=13|pages=3420–3430|doi=10.1158/1078-0432.CCR-09-2904|issn=1078-0432|via=}}
28. ^{{Cite journal|last=Lewis|first=C. E.|last2=De Palma|first2=M.|last3=Naldini|first3=L.|date=2007|title=Tie2-Expressing Monocytes and Tumor Angiogenesis: Regulation by Hypoxia and Angiopoietin-2|url=http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-07-1684|journal=Cancer Research|language=en|volume=67|issue=18|pages=8429–8432|doi=10.1158/0008-5472.CAN-07-1684|issn=0008-5472|via=}}
29. ^{{Cite journal|last=Ebos|first=J.M.L.|last2=Lee|first2=C. R.|last3=Cruz-Munoz|first3=W|last4=Bjarnason|first4=G. A.|last5=Christensen|first5=J. G.|last6=Kerbel|first6=R. S.|date=2009|title=Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis|url=https://linkinghub.elsevier.com/retrieve/pii/S1535610809000294|journal=Cancer Cell|language=en|volume=15|issue=3|pages=232–239|doi=10.1016/j.ccr.2009.01.021|pmc=4540346|pmid=19249681|via=}}
30. ^{{Cite journal|last=Pàez-Ribes|first=M|last2=Allen|first2=E|last3=Hudock|first3=J|last4=Takeda|first4=T|last5=Okuyama|first5=H|last6=Viñals|first6=F|last7=Inoue|first7=M|last8=Bergers|first8=G|last9=Hanahan|first9=D|date=2009|title=Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis|url=https://linkinghub.elsevier.com/retrieve/pii/S1535610809000348|journal=Cancer Cell|language=en|volume=15|issue=3|pages=220–231|doi=10.1016/j.ccr.2009.01.027|pmc=2874829|pmid=19249680|via=}}
31. ^{{Cite journal|last=Ebos|first=J. M. L.|last2=Lee|first2=C. R.|last3=Christensen|first3=J. G.|last4=Mutsaers|first4=A. J.|last5=Kerbel|first5=R. S.|date=2007|title=Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy|url=http://www.pnas.org/cgi/doi/10.1073/pnas.0708148104|journal=Proceedings of the National Academy of Sciences|language=en|volume=104|issue=43|pages=17069–17074|doi=10.1073/pnas.0708148104|issn=0027-8424|pmc=2040401|pmid=17942672|via=}}
32. ^{{Cite journal|last=Ceelen|first=W|last2=Pattyn|first2=P|last3=Mareel|first3=M|date=2014|title=Surgery, wound healing, and metastasis: Recent insights and clinical implications|url=https://linkinghub.elsevier.com/retrieve/pii/S1040842813001595|journal=Critical Reviews in Oncology/Hematology|language=en|volume=89|issue=1|pages=16–26|doi=10.1016/j.critrevonc.2013.07.008|via=}}
33. ^{{Cite journal|last=Rachman-Tzemah|first=C|last2=Zaffryar-Eilot|first2=S|last3=Grossman|first3=M|last4=Ribero|first4=D|last5=Timaner|first5=M|last6=Mäki|first6=J. M.|last7=Myllyharju|first7=J|last8=Bertolini|first8=F|last9=Hershkovitz|first9=D|date=2017|title=Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases|url=https://linkinghub.elsevier.com/retrieve/pii/S2211124717304783|journal=Cell Reports|language=en|volume=19|issue=4|pages=774–784|doi=10.1016/j.celrep.2017.04.005|pmc=5413586|pmid=28445728|via=}}
34. ^Bono, A., Bianchi, P., Locatelli, A., Calleri, A., Quarna, J., Antoniott, P., Rabascio, C., Mancuso, P., Andreoni, B., and Bertolini, F. (2010) Angiogenic cells, macroparticles and RNA transcripts in laparoscopic vs open surgery for colorectal cancer. Cancer biology & therapy 10, 682-685https://www.ncbi.nlm.nih.gov/pubmed/20676027
35. ^{{Cite journal|last=Curigliano|first=G.|last2=Petit|first2=J. Y.|last3=Bertolini|first3=F.|last4=Colleoni|first4=M.|last5=Peruzzotti|first5=G.|last6=de Braud|first6=F.|last7=Gandini|first7=S.|last8=Giraldo|first8=A.|last9=Martella|first9=S.|date=2005|title=Systemic Effects of Surgery: Quantitative Analysis of Circulating Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) and Transforming Growth Factor Beta (TGF-β) in Patients with Breast Cancer Who Underwent Limited or Extended Surgery|url=http://link.springer.com/10.1007/s10549-005-3381-1|journal=Breast Cancer Research and Treatment|language=en|volume=93|issue=1|pages=35–40|doi=10.1007/s10549-005-3381-1|issn=0167-6806|via=}}
36. ^Langenberg, M. H., Nijkamp, M. W., Roodhart, J. M., Snoeren, N., Tang, T., Shaked, Y., van Hillegersberg, R., Witteveen, P. O., Vermaat, J. S., Kranenburg, O., Kerbel, R. S., Medema, R. H., Borel Rinkes, I. H., and Voest, E. E. (2010) Liver surgery induces an immediate mobilization of progenitor cells in liver cancer patients: A potential role for G-CSF. Cancer biology & therapy 9, 743-748https://www.ncbi.nlm.nih.gov/pubmed/20215863
{{AFC submission|||ts=20190318093535|u=Nili Dahan|ns=118}}
随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/29 22:31:03