词条 | Draft:Utkir Rozikov |
释义 |
{{infobox academic |image=Utkir Rozikov.jpg |name=Utkir Rozikov |birth_date={{birth date and age|1970|05|20}} |birth_place=Bukhara, Uzbekistan |residence=Tashkent, Uzbekistan |nationality=Uzbek |alma_mater=Samarkand State University |discipline=Mathematics |main_interests= Algebra, probability theory and Stochastic processes, Dynamical systems and ergodic theory, Functional analysis, and mathematical physics |workplaces=Institute of Mathematics, Tashkent }} Utkir Abdulloyevich Rozikov (born May 20, 1970) is an internationally renowned expert in probability, mathematical physics and analysis, specializing in dynamical systems and statistical mechanics on graphs. He represents the strong Tashkent research school which grew from the Dobsrushin–Minlos–Sinai seminar at Moscow in the 1960–70s. Rozikov has made significant contributions to the deep analysis of Gibbs states in topical models of statistical mechanics on trees (Ising, Potts, SOS), in particular with random interactions and/or in external field. He has promoted new tools in studying Gibbs measures on graphs, such as group representation theory, information flows, node-weighted random walks, contour methods on trees, and non-linear analysis. Rozikov has also advanced the idea of studying p-adic dynamical systems relevant to multiscale and/or chaotic systems, applied to statistical mechanics on trees and Cayley graphs of non-amenable groups. His more recent interests are focussed on evolution algebras of sex-linked populations, aiming to incorporate thermodynamics in mathematical biology models. [https://twas.org/sites/default/files/cvpubl-rozikov1801.pdf] Utkir Rozikov was elected as a member of The World Academy of Sciences (TWAS) in 2018.[1] BiographyUtkir Abdulloyevich Rozikov was born into Uzbek family on May 20, 1970, in Bukhara, Uzbekistan. He is a professor in the Institute of Mathematics[2], Uzbekistan Academy of Sciences, Tashkent, Uzbekistan. He was graduated the Samarkand State University (1993) with an honour diploma. He was a winner of several Mathematical Olympiads. He got Ph.D (1995) and Doctor of sciences in physics and mathematics (2001) degrees from the Institute of Mathematics, Tashkent. He is professor since 2010. Rozikov (since 1995) has published over 140 papers in top journals including 11 papers in the flagship Journal of Statistical Physics (Impact Factor 1.202) and also in Lett. Math. Phys. (1.939), Comm. Math. Phys. (2.086), J. Stat. Mech. Theory Exp. (2.404), J. Math. Anal. Appl. (1.120), etc. In particular, in 2013 he published an extensive review paper (112 pages) in Rev. Math. Phys. (1.329), followed by the authoritative research monograph “Gibbs Measures on Cayley Trees”[3] (World Scientific, 2013). [https://twas.org/sites/default/files/cvpubl-rozikov1801.pdf] Rozikov was a visiting professor and invited researcher at many universities and research centres in France, Germany, Italy, Spain, UK, Switzerland and Turkey. Research interests
Awards and fellowships [https://twas.org/sites/default/files/cvpubl-rozikov1801.pdf]
Selected publicationsA. Book:1. Rozikov U.A. Gibbs Measures on Cayley Trees. World Scientific, Singapore, 2013. xviii+385 pp. ISBN: 978-981-4513-37-1[5] B. Selected peer-reviewed papers in international journals (chosen among 140 papers published in international journals):1. Rozikov, U.A. and Sattarov, I.A. p-adic dynamical systems of (2; 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270. (doi:10.1016/j.chaos.2017.11.002).[6] 2. Rakhmatullaev, M.M. and Rozikov, U.A. Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones. Journal of Statistical Mechanics: Theory and Experiment (2017), 093205 (doi:10.1088/1742-5468/aa85c2)[7] 3. Rozikov, U.A. Tree-hierarchy of DNA and distribution of Holliday junctions. Journal of Mathematical Biology, 75 (2017), 1715–1733 (doi:10.1007/s00285-017-1136-3).[8] 4. Gandolfo, D., Rahmatullaev, M.M. and Rozikov, U.A. Boundary conditions for translation-invariant Gibbs measures of the Potts model on Cayley trees. Journal of Statistical Physics, 167 (2017), 1164–1179. (doi:10.1007/s10955-017-1771-5).[9] 5. Kuelske C., Rozikov U.A., Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree. Random Structures and Algorithms. 50(4) (2017), 636-678. DOI 10.1002/rsa.20671.[10] 6. Dzhumadil'daev A., Omirov B.A., Rozikov U.A. Constrained evolution algebras and dynamical systems of a bisexual population. Linear Algebra Appl. 2016. V.496, p. 351-380. https://dx.doi.org/10.1016/j.laa.2016.01.048[11] 7. Rozikov U.A., Khakimov R.M. Gibbs measures for the fertile three-state hard-core models on a Cayley tree. Queueing Syst., 81 (2015), 49–69. doi:10.1007/s11134-015-9450-1[12] 8. Kuelske C., Rozikov U.A. Extremality of translation-invariant phases for a three-state SOS-model on the binary tree. J. Stat. Phys. 160 (2015), 659–680. doi:10.1007/s10955-015-1279-9[13] 9. Rozikov U.A., Haydarov F.H. Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18 (2015), no. 1, 1550006 (22 pages). DOI:10.1142/S021902571550006X[14] 10. Omirov B.A., Rozikov U.A., Tulenbayev K.M. On real chains of evolution algebras. Linear & Multilinear Algebra 63 (2015), 586–600. doi:10.1080/03081087.2014.889131 11. Dzhumadil’daev A., Omirov B.A., Rozikov U.A. On a class of evolution algebras of “chicken” population. Internat. J. Math. 25 (2014), no. 8, 1450073-92. doi:10.1142/S0129167X14500736[15] 12. Rozikov U.A., Akin H., Uguz S. Exact solution of a generalized ANNNI model on a Cayley tree. Math. Phys. Anal. Geom. 17 (2014), 103–114. doi:10.1007/s11040-014-9144-7[16] 13. Labra, A., Ladra, M. and Rozikov, U.A. An evolution algebra in population genetics. Linear Algebra and its Applications, 457 (2014), 348–362 (doi:10.1016/j.laa.2014.05.036).[17] 14. Kuelske C., Rozikov U.A., Khakimov R.M. Description of the translation invariant splitting Gibbs measures for the Potts model on a Cayley tree. Jour. Stat. Phys. 156(1) (2014) 189-200. DOI 10.1007/s10955-014-0986-y[18] 15. Cassandro M., Merola T., Picco P., Rozikov U.A. One-dimensional Ising models with long range interactions: Cluster expansion, Phase-separating point. Commun.Math. Phys. 327(3) (2014) 951-991. (DOI) 10.1007/s00220-014-1957-5[19] References1. ^https://twas.org/directory/rozikov-utkir 2. ^http://www.mathinst.uz/en/content/academics 3. ^{{Cite book|url=https://www.worldscientific.com/worldscibooks/10.1142/8841|title=Gibbs Measures on Cayley Trees|last=Rozikov|first=Utkir A|date=2013-05-20|publisher=WORLD SCIENTIFIC|isbn=9789814513371|language=en-US|doi=10.1142/8841}} 4. ^https://imera.univ-amu.fr/en/resident/utkir-rozikov 5. ^{{Cite book|url=https://www.worldcat.org/oclc/855022908|title=Gibbs measures on Cayley trees|last=1970-|first=Rozikov, Utkir A.,|isbn=9789814513388|location=[Hackensack] New Jersey|oclc=855022908}} 6. ^{{Cite journal|last=Rozikov|first=U.A.|last2=Sattarov|first2=I.A.|date=December 2017|title=p -adic dynamical systems of (2,2)-rational functions with unique fixed point|url=http://linkinghub.elsevier.com/retrieve/pii/S0960077917304575|journal=Chaos, Solitons & Fractals|volume=105|pages=260–270|doi=10.1016/j.chaos.2017.11.002|issn=0960-0779}} 7. ^{{Cite journal|last=Rahmatullaev|first=M. M.|last2=Rozikov|first2=U. A.|date=2017|title=Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones|url=http://stacks.iop.org/1742-5468/2017/i=9/a=093205|journal=Journal of Statistical Mechanics: Theory and Experiment|language=en|volume=2017|issue=9|pages=093205|doi=10.1088/1742-5468/aa85c2|issn=1742-5468}} 8. ^{{Cite journal|last=Rozikov|first=U. A.|date=2017-05-08|title=Tree-hierarchy of DNA and distribution of Holliday junctions|url=https://link.springer.com/10.1007/s00285-017-1136-3|journal=Journal of Mathematical Biology|language=en|volume=75|issue=6–7|pages=1715–1733|doi=10.1007/s00285-017-1136-3|pmid=28484802|issn=0303-6812}} 9. ^{{Cite journal|last=Gandolfo|first=D.|last2=Rahmatullaev|first2=M. M.|last3=Rozikov|first3=U. A.|date=2017-03-27|title=Boundary Conditions for Translation-Invariant Gibbs Measures of the Potts Model on Cayley Trees|url=https://link.springer.com/10.1007/s10955-017-1771-5|journal=Journal of Statistical Physics|language=en|volume=167|issue=5|pages=1164–1179|doi=10.1007/s10955-017-1771-5|issn=0022-4715}} 10. ^{{Cite journal|last=Külske|first=Christof|last2=Rozikov|first2=Utkir A.|date=2016-08-26|title=Fuzzy transformations and extremality of Gibbs measures for the potts model on a Cayley tree|url=http://doi.wiley.com/10.1002/rsa.20671|journal=Random Structures & Algorithms|language=en|volume=50|issue=4|pages=636–678|doi=10.1002/rsa.20671|issn=1042-9832}} 11. ^{{Cite journal|last=Dzhumadil'daev|first=A.|last2=Omirov|first2=B.A.|last3=Rozikov|first3=U.A.|date=May 2016|title=Constrained evolution algebras and dynamical systems of a bisexual population|url=https://dx.doi.org/10.1016/j.laa.2016.01.048|journal=Linear Algebra and its Applications|volume=496|pages=351–380|doi=10.1016/j.laa.2016.01.048|issn=0024-3795}} 12. ^{{Cite journal|last=Rozikov|first=U. A.|last2=Khakimov|first2=R. M.|date=2015-06-10|title=Gibbs measures for the fertile three-state hard-core models on a Cayley tree|url=https://link.springer.com/10.1007/s11134-015-9450-1|journal=Queueing Systems|language=en|volume=81|issue=1|pages=49–69|doi=10.1007/s11134-015-9450-1|issn=0257-0130}} 13. ^{{Cite journal|last=Kuelske|first=C.|last2=Rozikov|first2=U. A.|date=2015-05-20|title=Extremality of Translation-Invariant Phases for a Three-State SOS-Model on the Binary Tree|url=https://link.springer.com/10.1007/s10955-015-1279-9|journal=Journal of Statistical Physics|language=en|volume=160|issue=3|pages=659–680|doi=10.1007/s10955-015-1279-9|issn=0022-4715}} 14. ^{{Cite journal|last=Rozikov|first=U. A.|last2=Haydarov|first2=F. H.|date=March 2015|title=Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree|url=http://www.worldscientific.com/doi/abs/10.1142/S021902571550006X|journal=Infinite Dimensional Analysis, Quantum Probability and Related Topics|language=en|volume=18|issue=1|pages=1550006|doi=10.1142/s021902571550006x|issn=0219-0257}} 15. ^{{Cite journal|last=Dzhumadil'daev|first=A.|last2=Omirov|first2=B. A.|last3=Rozikov|first3=U. A.|date=July 2014|title=On a class of evolution algebras of "chicken" population|url=http://www.worldscientific.com/doi/abs/10.1142/S0129167X14500736|journal=International Journal of Mathematics|language=en|volume=25|issue=8|pages=1450073|doi=10.1142/s0129167x14500736|issn=0129-167X}} 16. ^{{Cite journal|last=Rozikov|first=U. A.|last2=Akin|first2=H.|last3=Ug~uz|first3=S.|date=2014-05-03|title=Exact Solution of a Generalized ANNNI Model on a Cayley Tree|url=https://link.springer.com/10.1007/s11040-014-9144-7|journal=Mathematical Physics, Analysis and Geometry|language=en|volume=17|issue=1–2|pages=103–114|doi=10.1007/s11040-014-9144-7|issn=1385-0172}} 17. ^{{Cite journal|last=Labra|first=A.|last2=Ladra|first2=M.|last3=Rozikov|first3=U.A.|date=September 2014|title=An evolution algebra in population genetics|url=http://linkinghub.elsevier.com/retrieve/pii/S0024379514003383|journal=Linear Algebra and its Applications|volume=457|pages=348–362|doi=10.1016/j.laa.2014.05.036|issn=0024-3795}} 18. ^{{Cite journal|last=Külske|first=C.|last2=Rozikov|first2=U. A.|last3=Khakimov|first3=R. M.|date=2014-04-09|title=Description of the Translation-Invariant Splitting Gibbs Measures for the Potts Model on a Cayley Tree|url=https://link.springer.com/10.1007/s10955-014-0986-y|journal=Journal of Statistical Physics|language=en|volume=156|issue=1|pages=189–200|doi=10.1007/s10955-014-0986-y|issn=0022-4715}} 19. ^{{Cite journal|last=Cassandro|first=Marzio|last2=Merola|first2=Immacolata|last3=Picco|first3=Pierre|last4=Rozikov|first4=Utkir|date=2014-03-30|title=One-Dimensional Ising Models with Long Range Interactions: Cluster Expansion, Phase-Separating Point|url=https://link.springer.com/10.1007/s00220-014-1957-5|journal=Communications in Mathematical Physics|language=en|volume=327|issue=3|pages=951–991|doi=10.1007/s00220-014-1957-5|issn=0010-3616}}
External links
|
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。