请输入您要查询的百科知识:

 

词条 Genetically encoded voltage indicator
释义

  1. History

  2. Structure

  3. Characteristics

  4. Applications and advantages

  5. References

Genetically encoded voltage indicator (or GEVI) is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level.[1] It is a promising optogenetic recording tool that enables exporting electrophysiological signals from cultured cells, live animals, and ultimately human brain. Examples of notable GEVIs include ArcLight, ASAP1,[2] ASAP2s,[3] and Ace2N-mNeon.

History

Despite that the idea of optical measurement of neuronal activity was proposed in the late 1960s,[4] the first successful GEVI that was convenient enough to put into actual use was not developed until technologies of genetic engineering had become mature in the late 1990s. The first GEVI, coined FlaSh,[5] was constructed by fusing a modified green fluorescent protein with a voltage-sensitive K+ channel (Shaker). Unlike fluorescent proteins, the discovery of new GEVIs were seldomly inspired by the nature, for it is hard to find an organism which naturally has the ability to change its fluorescence based on voltage. Therefore, new GEVIs are mostly the products of genetic and protein engineering.

Two methods can be utilized to find novel GEVIs: rational design and directed evolution. The former method contributes to the most of new GEVI variants, but recent researches using directed evolution have shown promising results in GEVI optimization.[6]

Structure

GEVI can have many configuration designs in order to realize voltage sensing function.[7] An essential feature of GEVI structure is that it must situate on the cell membrane. Conceptually, the structure of a GEVI should permit the function of sensing the voltage difference and reporting it by change in fluorescence. Usually, the voltage-sensing domain (VSD) of a GEVI spans across the membrane, and is connected to the fluorescent protein(s). However, it is not necessary that sensing and reporting should happen in different structures, e.g. Arch.

By structure, GEVIs can be classified into four categories based on the current findings: (1) GEVIs contain a fluorescent protein FRET pair, e.g. VSFP1, (2) Single opsion GEVIs, e.g. Arch, (3) Opsin-FP FRET pair GEVIs, e.g. MacQ-mCitrine, (4) single FP with special types of voltage sensing domains, e.g. ASAP1. A majority of GEVIs are based on the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP or Ci-VSD (domain)), which was discovered in 2005 from the genomic survey of the organism.[8] Some GEVIs might have similar components, but with different positioning of them. For example, ASAP1 and ArcLight both use a VSD and one FP, but the FP of ASAP1 is on the outside of the cell whereas that of ArcLight is on the inside, and the two FPs of VSFP-Butterfly are separated by the VSD, while the two FPs of Mermaid are relatively close to each other.

Table of GEVIs and their structure
name|A|↑YearSensingReportingPrecursor
FlaSh[5]1997Shaker (K+ channel)GFP -
VSFP1[9]2001Rat Kv2.1 (K+ channel)FRET pair: CFP and YFP -
SPARC[10]2002Rat Na+ channelGFP -
VSFP2's[11]2007Ci-VSDFRET pair: CFP (Cerulean) and YFP (Citrine)VSFP1
Flare[12]2007Kv1.4 (K+ channel)YFPFlaSh
VSFP3.1[13]2008Ci-VSDCFPVSFP2's
Mermaid[14]2008Ci-VSDFRET pair: Marine GFP (mUKG) and OFP (mKOκ)VSFP2's
hVOS[15]2008DipicrylamineGFP -
Red-shifted VSFP's[16]2009Ci-VSDRFP/YFP (Citrine, mOrange2, TagRFP, or mKate2)VSFP3.1
PROPS[17]2011Modified green-absorbing proteorhodopsin (GPR)Same as left -
Zahra, Zahra 2[18]2012Nv-VSD, Dr-VSDFRET pair: CFP (Cerulean) and YFP (Citrine)VSFP2's
ArcLight[19]2012Ci-VSDModified super ecliptic pHluorin -
Arch[20]2012Archaerhodopsin 3Same as left -
ElectricPk[21]2012Ci-VSDCircularly permuted EGFPVSFP3.1
VSFP-Butterfly[22]2012Ci-VSDFRET pair: YFP (mCitrine) and RFP (mKate2)VSFP2's
VSFP-CR[23]2013Ci-VSDFRET pair: GFP (Clover) and RFP(mRuby2)VSFP2.3
Mermaid2[24]2013Ci-VSDFRET pair: CFP (seCFP2) and YFPMermaid
Mac GEVIs[25]2014Mac rhodopsin (FRET acceptor)FRET doner: mCitrine, or mOrange2
QuasAr1, QuasAr2[26]2014Modified Archaerhodopsin 3Same as leftArch
Archer[27]2014Modified Archaerhodopsin 3Same as leftArch
ASAP1[2]2014Modified Gg-VSDCircularly permuted GFP -
Ace GEVIs[28]2015Modified Ace rhodopsinFRET doner: mNeonGreenMac GEVIs
ArcLightning[29]2015Ci-VSDModified super ecliptic pHluorinArcLight
Pado[30]2016Voltage-gated proton channelSuper ecliptic pHluorin -
ASAP2f[31]2016Modified Gg-VSDCircularly permuted GFPASAP1
FlicR1[32]2016Ci-VSDCircularly permuted RFP (mApple)VSFP3.1
Bongwoori[33]2017Ci-VSDModified super ecliptic pHluorinArcLight
ASAP2s[3]2017Modified Gg-VSDCircularly permuted GFPASAP1
ASAP-Y[34]2017Modified Gg-VSDCircularly permuted GFPASAP1
  1. {{note label|name|A|↑|Names in italic denote GEVIs not named. }}

Characteristics

A GEVI can be evaluated by its many characteristics. These traits can be classified into two categories: performance and compatibility. The performance properties include brightness, photostability, sensitivity, kinetics (speed), linearity of response, etc., while the compatibility properties cover toxicity (phototoxicity), plasma membrane localization, adaptability of deep-tissue imaging, etc.[35] For now, no existing GEVI meets all the desired properties, so searching for a perfect GEVI is still a quite competitive research area.

Applications and advantages

Different types of GEVIs are seen being used in many biological or physiological research areas. It is thought to be superior to conventional voltage detecting methods like electrode-based electrophysiological recordings, calcium imaging, or voltage sensitive dyes. It can show neuron signals with subcellular spatial resolution.[36] It has fast temporal resolution (sub-millisecond[28]), matching or surpassing that of the electrode recordings, and about one magnitude faster than calcium imaging. Researchers have used it to probe neural communications of an intact brain (of Drosophila[37] or mouse[38]), electrical spiking of bacteria (E. coli[17]), and human stem-cell derived cardiomyocyte.[39]

References

1. ^{{Cite web|url=https://www.openoptogenetics.org/index.php?title=Genetically-Encoded_Voltage_Indicators|title=Genetically-Encoded Voltage Indicators - OpenOptogenetics.org|website=www.openoptogenetics.org|access-date=2017-05-08}}
2. ^{{Cite journal|last=St-Pierre|first=François|last2=Marshall|first2=Jesse D|last3=Yang|first3=Ying|last4=Gong|first4=Yiyang|last5=Schnitzer|first5=Mark J|last6=Lin|first6=Michael Z|title=High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor|journal=Nature Neuroscience|volume=17|issue=6|pages=884–889|doi=10.1038/nn.3709|pmc=4494739|pmid=24755780|year=2014}}
3. ^{{Cite journal|last=Chamberland|first=Simon|last2=Yang|first2=Helen H|last3=Pan|first3=Michael M|last4=Evans|first4=Stephen W|last5=Guan|first5=Sihui|last6=Chavarha|first6=Mariya|last7=Yang|first7=Ying|last8=Salesse|first8=Charleen|last9=Wu|first9=Haodi|date=2017-07-27|title=Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators|journal=eLife|volume=6|doi=10.7554/eLife.25690|pmid=28749338|pmc=5584994|issn=2050-084X}}
4. ^{{Cite journal|last=Cohen|first=L. B.|last2=Keynes|first2=R. D.|last3=Hille|first3=B.|date=1968-05-04|title=Light scattering and birefringence changes during nerve activity|journal=Nature|volume=218|issue=5140|pages=438–441|issn=0028-0836|pmid=5649693|doi=10.1038/218438a0}}
5. ^{{Cite journal|last=Siegel|first=M. S.|last2=Isacoff|first2=E. Y.|date=1997-10-01|title=A genetically encoded optical probe of membrane voltage|journal=Neuron|volume=19|issue=4|pages=735–741|issn=0896-6273|pmid=9354320|doi=10.1016/S0896-6273(00)80955-1}}
6. ^{{Cite journal|last=Platisa|first=Jelena|last2=Vasan|first2=Ganesh|last3=Yang|first3=Amy|last4=Pieribone|first4=Vincent A.|date=2017-03-15|title=Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight|journal=ACS Chemical Neuroscience|volume=8|issue=3|pages=513–523|doi=10.1021/acschemneuro.6b00234|issn=1948-7193|pmc=5355904|pmid=28045247}}
7. ^{{Cite journal|last=Gong|first=Yiyang|date=2015-08-01|title=The evolving capabilities of rhodopsin-based genetically encoded voltage indicators|journal=Current Opinion in Chemical Biology|volume=27|pages=84–89|doi=10.1016/j.cbpa.2015.05.006|issn=1879-0402|pmc=4571180|pmid=26143170}}
8. ^{{Cite journal|last=Murata|first=Yoshimichi|last2=Iwasaki|first2=Hirohide|last3=Sasaki|first3=Mari|last4=Inaba|first4=Kazuo|last5=Okamura|first5=Yasushi|date=2005-06-30|title=Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor|journal=Nature|volume=435|issue=7046|pages=1239–1243|doi=10.1038/nature03650|issn=1476-4687|pmid=15902207}}
9. ^{{Cite journal|last=Sakai|first=R.|last2=Repunte-Canonigo|first2=V.|last3=Raj|first3=C. D.|last4=Knöpfel|first4=T.|date=2001-06-01|title=Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein|journal=The European Journal of Neuroscience|volume=13|issue=12|pages=2314–2318|issn=0953-816X|pmid=11454036|doi=10.1046/j.0953-816x.2001.01617.x}}
10. ^{{Cite journal|last=Ataka|first=Kazuto|last2=Pieribone|first2=Vincent A.|date=2002-01-01|title=A genetically targetable fluorescent probe of channel gating with rapid kinetics|journal=Biophysical Journal|volume=82|issue=1 Pt 1|pages=509–516|doi=10.1016/S0006-3495(02)75415-5|issn=0006-3495|pmc=1302490|pmid=11751337}}
11. ^{{Cite journal|last=Dimitrov|first=Dimitar|last2=He|first2=You|last3=Mutoh|first3=Hiroki|last4=Baker|first4=Bradley J.|last5=Cohen|first5=Lawrence|last6=Akemann|first6=Walther|last7=Knöpfel|first7=Thomas|date=2007-05-09|title=Engineering and characterization of an enhanced fluorescent protein voltage sensor|journal=PLoS One|volume=2|issue=5|pages=e440|doi=10.1371/journal.pone.0000440|issn=1932-6203|pmc=1857823|pmid=17487283}}
12. ^{{Cite journal|last=Baker|first=B. J.|last2=Lee|first2=H.|last3=Pieribone|first3=V. A.|last4=Cohen|first4=L. B.|last5=Isacoff|first5=E. Y.|last6=Knopfel|first6=T.|last7=Kosmidis|first7=E. K.|date=2007-03-30|title=Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells|journal=Journal of Neuroscience Methods|volume=161|issue=1|pages=32–38|doi=10.1016/j.jneumeth.2006.10.005|issn=0165-0270|pmid=17126911}}
13. ^{{Cite journal|last=Lundby|first=Alicia|last2=Mutoh|first2=Hiroki|last3=Dimitrov|first3=Dimitar|last4=Akemann|first4=Walther|last5=Knöpfel|first5=Thomas|date=2008-06-25|title=Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements|journal=PLoS One|volume=3|issue=6|pages=e2514|doi=10.1371/journal.pone.0002514|issn=1932-6203|pmc=2429971|pmid=18575613}}
14. ^{{Cite journal|last=Tsutsui|first=Hidekazu|last2=Karasawa|first2=Satoshi|last3=Okamura|first3=Yasushi|last4=Miyawaki|first4=Atsushi|date=2008-08-01|title=Improving membrane voltage measurements using FRET with new fluorescent proteins|journal=Nature Methods|volume=5|issue=8|pages=683–685|doi=10.1038/nmeth.1235|issn=1548-7105|pmid=18622396}}
15. ^{{Cite journal|last=Sjulson|first=Lucas|last2=Miesenböck|first2=Gero|date=2008-05-21|title=Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter|journal=The Journal of Neuroscience|volume=28|issue=21|pages=5582–5593|doi=10.1523/JNEUROSCI.0055-08.2008|issn=1529-2401|pmc=2714581|pmid=18495892}}
16. ^{{Cite journal|last=Perron|first=Amelie|last2=Mutoh|first2=Hiroki|last3=Launey|first3=Thomas|last4=Knöpfel|first4=Thomas|date=2009-12-24|title=Red-shifted voltage-sensitive fluorescent proteins|journal=Chemistry & Biology|volume=16|issue=12|pages=1268–1277|doi=10.1016/j.chembiol.2009.11.014|issn=1879-1301|pmc=2818747|pmid=20064437}}
17. ^{{Cite journal|last=Kralj|first=Joel M.|last2=Hochbaum|first2=Daniel R.|last3=Douglass|first3=Adam D.|last4=Cohen|first4=Adam E.|date=2011-07-15|title=Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein|journal=Science|volume=333|issue=6040|pages=345–348|doi=10.1126/science.1204763|issn=1095-9203|pmid=21764748}}
18. ^{{Cite journal|last=Baker|first=Bradley J.|last2=Jin|first2=Lei|last3=Han|first3=Zhou|last4=Cohen|first4=Lawrence B.|last5=Popovic|first5=Marko|last6=Platisa|first6=Jelena|last7=Pieribone|first7=Vincent|date=July 2012|title=Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics|journal=Journal of Neuroscience Methods|volume=208|issue=2|pages=190–196|doi=10.1016/j.jneumeth.2012.05.016|pmid=22634212|pmc=3398169|issn=0165-0270}}
19. ^{{Cite journal|last=Jin|first=Lei|last2=Han|first2=Zhou|last3=Platisa|first3=Jelena|last4=Wooltorton|first4=Julian R. A.|last5=Cohen|first5=Lawrence B.|last6=Pieribone|first6=Vincent A.|date=2012-09-06|title=Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe|journal=Neuron|volume=75|issue=5|pages=779–785|doi=10.1016/j.neuron.2012.06.040|issn=1097-4199|pmc=3439164|pmid=22958819}}
20. ^{{Cite journal|last=Kralj|first=Joel M.|last2=Douglass|first2=Adam D.|last3=Hochbaum|first3=Daniel R.|last4=Maclaurin|first4=Dougal|last5=Cohen|first5=Adam E.|date=2011-11-27|title=Optical recording of action potentials in mammalian neurons using a microbial rhodopsin|journal=Nature Methods|volume=9|issue=1|pages=90–95|doi=10.1038/nmeth.1782|issn=1548-7105|pmc=3248630|pmid=22120467}}
21. ^{{Cite journal|last=Barnett|first=Lauren|last2=Platisa|first2=Jelena|last3=Popovic|first3=Marko|last4=Pieribone|first4=Vincent A.|last5=Hughes|first5=Thomas|date=2012-01-01|title=A fluorescent, genetically-encoded voltage probe capable of resolving action potentials|journal=PLoS One|volume=7|issue=9|pages=e43454|doi=10.1371/journal.pone.0043454|issn=1932-6203|pmc=3435330|pmid=22970127}}
22. ^{{Cite journal|last=Akemann|first=Walther|last2=Mutoh|first2=Hiroki|last3=Perron|first3=Amélie|last4=Park|first4=Yun Kyung|last5=Iwamoto|first5=Yuka|last6=Knöpfel|first6=Thomas|date=2012-10-01|title=Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein|journal=Journal of Neurophysiology|volume=108|issue=8|pages=2323–2337|doi=10.1152/jn.00452.2012|issn=1522-1598|pmid=22815406}}
23. ^{{Cite journal|last=Lam|first=Amy J.|last2=St-Pierre|first2=François|last3=Gong|first3=Yiyang|last4=Marshall|first4=Jesse D.|last5=McKeown|first5=Michael R.|last6=Schnitzer|first6=Mark J.|last7=Tsien|first7=Roger Y.|last8=Lin|first8=Michael Z.|date=January 2013|title=Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins|journal=Biophysical Journal|volume=104|issue=2|pages=683a|doi=10.1016/j.bpj.2012.11.3773|issn=0006-3495}}
24. ^{{Cite journal|last=Tsutsui|first=Hidekazu|last2=Jinno|first2=Yuka|last3=Tomita|first3=Akiko|last4=Niino|first4=Yusuke|last5=Yamada|first5=Yoshiyuki|last6=Mikoshiba|first6=Katsuhiko|last7=Miyawaki|first7=Atsushi|last8=Okamura|first8=Yasushi|date=2013-09-15|title=Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase|journal=The Journal of Physiology|volume=591|issue=18|pages=4427–4437|doi=10.1113/jphysiol.2013.257048|issn=1469-7793|pmc=3784191|pmid=23836686}}
25. ^{{Cite journal|last=Gong|first=Yiyang|last2=Wagner|first2=Mark J.|last3=Zhong Li|first3=Jin|last4=Schnitzer|first4=Mark J.|date=2014-04-22|title=Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors|journal=Nature Communications|volume=5|pages=3674|doi=10.1038/ncomms4674|issn=2041-1723|pmc=4247277|pmid=24755708}}
26. ^{{Cite journal|last=Hochbaum|first=Daniel R.|last2=Zhao|first2=Yongxin|last3=Farhi|first3=Samouil L.|last4=Klapoetke|first4=Nathan|last5=Werley|first5=Christopher A.|last6=Kapoor|first6=Vikrant|last7=Zou|first7=Peng|last8=Kralj|first8=Joel M.|last9=Maclaurin|first9=Dougal|date=2014-08-01|title=All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins|journal=Nature Methods|volume=11|issue=8|pages=825–833|doi=10.1038/nmeth.3000|issn=1548-7105|pmc=4117813|pmid=24952910}}
27. ^{{Cite journal|last=Flytzanis|first=Nicholas C.|last2=Bedbrook|first2=Claire N.|last3=Chiu|first3=Hui|last4=Engqvist|first4=Martin K. M.|last5=Xiao|first5=Cheng|last6=Chan|first6=Ken Y.|last7=Sternberg|first7=Paul W.|last8=Arnold|first8=Frances H.|last9=Gradinaru|first9=Viviana|date=2014-09-15|title=Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons|journal=Nature Communications|volume=5|pages=4894|doi=10.1038/ncomms5894|issn=2041-1723|pmc=4166526|pmid=25222271}}
28. ^{{Cite journal|last=Gong|first=Yiyang|last2=Huang|first2=Cheng|last3=Li|first3=Jin Zhong|last4=Grewe|first4=Benjamin F.|last5=Zhang|first5=Yanping|last6=Eismann|first6=Stephan|last7=Schnitzer|first7=Mark J.|date=2015-12-11|title=High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor|journal=Science|volume=350|issue=6266|pages=1361–1366|doi=10.1126/science.aab0810|issn=1095-9203|pmc=4904846|pmid=26586188}}
29. ^{{Cite journal|last=Treger|first=Jeremy S.|last2=Priest|first2=Michael F.|last3=Bezanilla|first3=Francisco|date=2015-11-24|title=Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator|journal=eLife|volume=4|pages=e10482|doi=10.7554/eLife.10482|issn=2050-084X|pmc=4658195|pmid=26599732}}
30. ^{{Cite journal|last=Kang|first=Bok Eum|last2=Baker|first2=Bradley J.|date=2016-04-04|title=Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions|journal=Scientific Reports|volume=6|pages=23865|doi=10.1038/srep23865|issn=2045-2322|pmc=4878010|pmid=27040905}}
31. ^{{Cite journal|last=Yang|first=Helen H.|last2=St-Pierre|first2=François|last3=Sun|first3=Xulu|last4=Ding|first4=Xiaozhe|last5=Lin|first5=Michael Z.|last6=Clandinin|first6=Thomas R.|date=2016-06-30|title=Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo|journal=Cell|volume=166|issue=1|pages=245–257|doi=10.1016/j.cell.2016.05.031|issn=1097-4172|pmid=27264607|pmc=5606228}}
32. ^{{Cite journal|last=Abdelfattah|first=Ahmed S.|last2=Farhi|first2=Samouil L.|last3=Zhao|first3=Yongxin|last4=Brinks|first4=Daan|last5=Zou|first5=Peng|last6=Ruangkittisakul|first6=Araya|last7=Platisa|first7=Jelena|last8=Pieribone|first8=Vincent A.|last9=Ballanyi|first9=Klaus|date=2016-02-24|title=A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices|journal=The Journal of Neuroscience|volume=36|issue=8|pages=2458–2472|doi=10.1523/JNEUROSCI.3484-15.2016|issn=1529-2401|pmc=4764664|pmid=26911693}}
33. ^{{Cite journal|last=Lee|first=Sungmoo|last2=Geiller|first2=Tristan|last3=Jung|first3=Arong|last4=Nakajima|first4=Ryuichi|last5=Song|first5=Yoon-Kyu|last6=Baker|first6=Bradley J.|date=2017-08-15|title=Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition|journal=Scientific Reports|volume=7|issue=1|pages=8286|doi=10.1038/s41598-017-08731-2|pmid=28811673|pmc=5557843|issn=2045-2322}}
34. ^{{Cite journal|last=Lee|first=Elizabeth E. L.|last2=Bezanilla|first2=Francisco|date=2017-11-21|title=Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement|journal=Biophysical Journal|volume=113|issue=10|pages=2178–2181|doi=10.1016/j.bpj.2017.10.018|issn=1542-0086|pmc=5700382|pmid=29108650}}
35. ^{{Cite journal|last=Yang|first=Helen H.|last2=St-Pierre|first2=François|date=2016-09-28|title=Genetically Encoded Voltage Indicators: Opportunities and Challenges|journal=The Journal of Neuroscience|volume=36|issue=39|pages=9977–9989|doi=10.1523/JNEUROSCI.1095-16.2016|issn=1529-2401|pmc=5039263|pmid=27683896}}
36. ^{{Cite journal|last=Kaschula|first=Richard|last2=Salecker|first2=Iris|date=2016-06-30|title=Neuronal Computations Made Visible with Subcellular Resolution|journal=Cell|volume=166|issue=1|pages=18–20|doi=10.1016/j.cell.2016.06.022|issn=1097-4172|pmid=27368098}}
37. ^{{Cite journal|last=Cao|first=Guan|last2=Platisa|first2=Jelena|last3=Pieribone|first3=Vincent A.|last4=Raccuglia|first4=Davide|last5=Kunst|first5=Michael|last6=Nitabach|first6=Michael N.|date=2013-08-15|title=Genetically targeted optical electrophysiology in intact neural circuits|journal=Cell|volume=154|issue=4|pages=904–913|doi=10.1016/j.cell.2013.07.027|issn=1097-4172|pmc=3874294|pmid=23932121}}
38. ^{{Cite journal|last=Knöpfel|first=Thomas|last2=Gallero-Salas|first2=Yasir|last3=Song|first3=Chenchen|date=2015-08-01|title=Genetically encoded voltage indicators for large scale cortical imaging come of age|journal=Current Opinion in Chemical Biology|volume=27|pages=75–83|doi=10.1016/j.cbpa.2015.06.006|issn=1879-0402|pmid=26115448}}
39. ^{{Cite journal|last=Kaestner|first=Lars|last2=Tian|first2=Qinghai|last3=Kaiser|first3=Elisabeth|last4=Xian|first4=Wenying|last5=Müller|first5=Andreas|last6=Oberhofer|first6=Martin|last7=Ruppenthal|first7=Sandra|last8=Sinnecker|first8=Daniel|last9=Tsutsui|first9=Hidekazu|date=2015-09-08|title=Genetically Encoded Voltage Indicators in Circulation Research|journal=International Journal of Molecular Sciences|volume=16|issue=9|pages=21626–21642|doi=10.3390/ijms160921626|issn=1422-0067|pmc=4613271|pmid=26370981}}

3 : Biotechnology|Protein engineering|Electrophysiology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 23:21:33