请输入您要查询的百科知识:

 

词条 Genetic history of East Asians
释义

  1. Genetic history of ancient East Asian peoples

      Jomon people of Japan    Proposed Origin    Paternal lineage    Maternal lineage    Autosomal DNA    Yayoi people of Japan    Paternal lineage    Xiongnu people    Paternal lineages    Xianbei people    Paternal lineages    Maternal lineages  

  2. Genetic history of Han Chinese

      Paternal lineages    Maternal lineages  

  3. Genetic history of Japanese

     Y-chromosome DNA  Mitochondrial DNA  Single-nucleotide polymorphism  Immunoglobulin G   Genetic components from other Asian populations  

  4. Genetic history of Koreans

     Paternal lineage  Maternal lineage 

  5. Genetic history of Mongolians

      Paternal lineages    Maternal lineages    Autosomal DNA  

  6. Genetic history of Tibetans

      Relationship to other populations    Relationship to archaic hominins    Haplogroup distribution  

  7. Genetic history of Turks

      Paternal lineages    Maternal lineages    Anatolian/European Turks  

  8. References

The genetic history of East Asians relates to the genetic makeup of people within East Asia.

Genetic history of ancient East Asian peoples

Jomon people of Japan

Jomon people is the generic name of people who lived in the Japanese archipelago during the Jōmon period. Today most Japanese historians believe that the Jomon people were not one homogeneous people but were at least two or three distinct groups.

[1]

Compared to people of Yamato descent, Jomon often have lighter skin and more body hair.[2] Many early investigators proposed a Caucasoid ancestry.{{sfnp|Chisholm|1911}} Luigi Luca Cavalli-Sforza places the Ainu in his "Northeast and East Asian" genetic cluster.[3]

Japanese researcher and specialist in Biological Anthropology Noriko Seguchi of the Kyushu University claims that the majority of Jomon people originated in Northeastern Siberia and are an ancestral population closer to modern Caucasoids than to neo-mongoloids. Further he believes that the planked-canoe technology helped the Jomon to travel and hunt on the coastal Areas of Northeast Asia and possibly northern America.[4] Other anthropologist suggest an origin for at least some Jomon people in today Southeast Asia.[5]

The relationship of Jōmon people to the modern Japanese (Yamato people), Ryukyuans and Ainu is diverse and not well clarified. Older morphological studies of dental variation suggested that the Jōmon people were of southern origin, while newer genetic studies and studies about immunoglobin DNA markers suggest that the Jōmon people were of northern origin.[6][7] According to recent studies the contemporary Japanese people descended from a mixture of the ancient hunter-gatherer Jōmon and the Yayoi rice agriculturalists, and these two major ancestral groups came to Japan over different routes at different times.[8][9][10][11][12][13]

Proposed Origin

The origin of the Jomon people and their ancestors is disputed. Several theories suggested Southeast Asia or Northeast Asia as possible place of origin. Another theory supported an origin in East Asia.

Newest genetic studies (since 2017) conclude that the Jomon are the last descendants of a unique group of ancient people. The study suggests an ancient origin in modern Central Asia.[14][9]

Paternal lineage

Recent Y chromosome haplotype testing has led to the hypothesis that male haplogroups D1b and C1a1, which have been found in different percentages of samples of modern Japanese, Ryukyuan, and Ainu populations, may reflect patrilineal descent from members of pre-Jōmon and Jōmon period of the Japanese Archipelago.[9]

Haplogroup D1b is found in about 38% and haplogroup C1a1 in about 10%[9] of modern Japanese people. C1a1 has its highest amount in Tokushima Prefecture at about 17%, followed by Okinawa Prefecture and Tokyo at about 8-9%.[18] In addition, it is assumed that the haplogroup C2 existed in a small amount of Jōmon people.[15]

Haplogroup D is common in modern Japanese, Tibetans, and Andamanese tribes, as well in some Central Asias, Siberians (Altaians) and minority groups in southern China. Haplogroup C1a1 is only found in Jomon people, modern Japanese, Paleolithic and Neolithic Europe (Cro-Magnoid) and in very few modern Europeans, Georgians and Arabs. Mitsuru Sakitani said that C1a1's ancestral type possibly reached Japan via the Korean Peninsula via the Altai Mountains from South-west Asia.[16]

Maternal lineage
MtDNA Haplogroup of Jōmon people is characterized by D1a, M7a, N9b. M7a has the highest frequency in Okinawa and N9b in Hokkaido and Honshu. In addition, B and F are also found in Jōmon people.[17]

Analysis of the mitochondrial DNA ("mtDNA") of Jōmon skeletons from Hokkaido, Okinawa Island and Tōhoku region indicates that haplogroups N9b and M7a may reflect maternal Jōmon contribution to the modern Japanese mtDNA pool.[7][13][18][19][20][21] In another study of ancient DNA published by the same authors in 2011, both the control and coding regions of mitochondrial DNA (mtDNA) recovered from Jōmon skeletons excavated from the northernmost island of Japan, Hokkaido, were analyzed in detail, and 54 mtDNA samples were confidently assigned to relevant haplogroups. Haplogroups N9b, D4h2, G1b, and M7a were observed in these individuals.[22] According to 2013 study, there was mtDNA sub-haplogroups inter-regional heterogeneity within the Jōmon people, specifically between studied Kantō, Hokkaido and Tōhoku Jōmon.[7] According to 2011 study all major East Asian mtDNA lineages expanded before 10,000 YBP, except for two Japanese lineages D4b2b1 and M7a1a which population expanded around 7000 YBP unequivocally during the Jōmon Period (14–2.3 kya), thousands of years before intensive agriculture which imply that the growth of population and depletion of food resources was the reason for population expansion and not agriculture.[23]

A study about maternal DNA of Jomon individuals resulted in similarities between Jomon people and ancient Siberian people. Interestingly, the study also suggests a relation of some Jomon people to at least some Native American groups.[24]

Autosomal DNA

A 2017 study on ancient Jomon aDNA from Sanganji shell mound in Tōhoku region estimates that the modern mainland Japanese population probably inherited about 13% to 34% (in average ~ 20%) of Jōmon peoples' genomes.[13][25]

The first full genomic DNA analysis of Jomon individuals by Hideaki Kanzawa-Kiriyama of the department of genetics in the University for Advanced Studies (SOKENDAI) showed that the Jomon people are not closely related to any modern ethnic group. His analysis groups the Jomon people into a unique genetic cluster far away from any modern ethnic groups. Hideaki says that some Jomon DNA is found in modern ethnic groups, such as Japanese people, Udege people, Nivkh people, Ainu people and Ryukyuan people. From all ethnic groups, the Ainu and Ryukyuans show the closest relation to ancient Jomon people. Compared with populations worldwide, the Jomon are relative close to modern Ryukyuans, Ainu and Yamato Japanese.[26]

The archeologist Yuichi Nakazawa suggest that the majority of Jomon people migrated from North into Japan and than spread to all parts of modern Japan. But he also suggest that possibly another but much smaller group migrated from South into some parts of Japan, mostly on some Ryukyu Islands.[27]

A reconstruction of an 8000-year old Jomon woman of Rebun Island in Hokkaido showed that she had slightly darker skin than modern Japanese people but a lighter eye colour. She also had freckles and thin brown hair.[28]

Yayoi people of Japan

The Yayoi people were migrants to the Japanese archipelago from Asia (China or Korea) during the Yayoi period (1000 BCE–300 CE).

Paternal lineage

It is estimated that Yayoi people mainly belonged to Haplogroup O-M175 and Haplogroup O-M176 which are typical for East- and Northeast-Asians.[9]

Xiongnu people

The Xiongnu, possibly a Turkic, Iranian, Mongolic, Yenisseian or multi-ethnic people, were a confederation[29] of nomadic peoples who, according to ancient Chinese sources, inhabited the eastern Asian Steppe from the 3rd century BC to the late 1st century AD. Chinese sources report that Modu Chanyu, the supreme leader after 209 BC, founded the Xiongnu Empire.[30]

A majority (89%) of the Xiongnu sequences can be classified as belonging to Asian haplogroups, and nearly 11% belong to European haplogroups.[31]

Paternal lineages

Over the past decade, Chinese archaeologists have published several reviews regarding the results of excavations in Xinjiang. They imply the genetic composition of Xiongnu's supreme ruling class. Particularly interesting are the tombs in the cemetery at Heigouliang, Xinjiang (the Black Gouliang cemetery, also known as the summer palace of the Xiongnu king), east of the Barkol basin, near the city of Hami. By typing results of DNA samples during the excavation of one of the tombs, it was determined that of the 12 men: 6 Q1a* (not Q1a1-M120, not Q1a1b-M25, not Q1a2-M3), 4 Q1b-M378, 2 Q* (not Q1a, not Q1b: unable to determine subclades):[32]

In a paper (Lihongjie 2012), the author analyzed the Y-DNAs of the ancient male samples from the 2nd or 1st century BCE cemetery at Heigouliang in Xinjiang – which is also believed to be the site of a summer palace for Xiongnu kings – which is east of the Barkol basin and near the city of Hami. The Y-DNA of 12 men excavated from the site belonged to Q-MEH2 (Q1a) or Q-M378 (Q1b). The Q-M378 men among them were regarded as hosts of the tombs; half of the Q-MEH2 men appeared to be hosts and the other half as sacrificial victims.

Xianbei people

The origins of the Xianbei are unclear. It is proven that they were a Mongoloid population. Chinese anthropologist Zhu Hong and Zhang Quan‐chao studied Xianbei crania from several sites of Inner Mongolia and noticed that anthropological features of studied Xianbei crania show that the racial type is closely related to the modern East-Asian Mongoloids, and some physical characteristics of those skulls are closer to modern Mongols, Manchu and Han Chinese.[33]

Paternal lineages

An analysis on the y-DNA markers of ancient individuals of northern China and modern Mongolia showed that Xianbei individuals belong to the Haplogroup C-M217, Haplogroup N-M231 Haplogroup O-M175 and Haplogroup Q-M242. Xianbei are on the one hand most closely related to samples of the Xiongnu and Mongols and on the other hand to Han Chinese. It is possible that the Xianbei were a multi-ethnic federation consisting of northern nomadic people and southern agriculturalists who joined or adopted a nomadic life.[34]

Other research found a relation between Xianbei individuals with modern Oroqen, Ewenki and Outer Mongolian people. Especially Tungusic Oroqen show close relation to Xianbei.[35]

Maternal lineages

Mitochondrial-DNA genetic analyses were done on the remains of 17 Tuoba Xianbei individuals from 1,500-1,800-year-old Xianbei populations taken from Shangdu Dongdajing cemetery (Inner Mongolia). The haplogroups presented are typically characterized in mongoloid Asian populations such as 29.5% C, 23.5% D4 , 17.6% D5, 17.6% A , 5.9% B and 5.9% G.[36]

Genetic history of Han Chinese

A 2018 study calculated pairwise FST (a measure of genetic difference) based on genome-wide SNPs, among the Han Chinese (Northern Han from Beijing and Southern Han from Hunan and Fujian provinces), Japanese and Korean populations sampled. It found that the smallest FST value was between North Han Chinese (CHB) and South Han Chinese (CHS) (FST[CHB-CHS] = 0.0014), while CHB and Korean (KOR) (FST[CHB-KOR] = 0.0026) and between KOR and Japanese (JPT) (FST[JPT-KOR] = 0.0033). Generally, pairwise FST between Han Chinese, Japanese and Korean (0.0026~ 0.0090) are greater than that within Han Chinese (0.0014). These results suggested Han Chinese, Japanese and Korean are different in terms of genetic make-up, and the difference among the three groups are much larger than that between northern and southern Han Chinese.[37]

Another study shows that the northern and southern Han Chinese are genetically closest to each other and it finds that the genetic characteristics of present-day northern Han Chinese was already formed as early as three-thousand years ago in the Central Plain area.[38]

A recent genetic study on the remains of people (~4000 years BP) from the Mogou site in the Gansu-Qinghai (or Ganqing) region of China revealed more information on the genetic contributions of these ancient Di-Qiang people to the ancestors of the Northern Han. It was deduced that some Di-Qiang people had merged into the ancestral Han population, resulting in the Mogou people being similar to the Han in sharing up to ~33% paternal (O3a) and ~70% maternal (D, A, F, M10) haplogroups.[39]

The estimated contribution of northern Han to southern Han is substantial in both paternal and maternal lineages and a geographic cline exists for mtDNA. As a result, the northern Han are the primary contributors to the gene pool of the southern Han. However, it is noteworthy that the expansion process was dominated by males, as is shown by a greater contribution to the Y-chromosome than the mtDNA from northern Han to southern Han. These genetic observations are in line with historical records of continuous and large migratory waves of northern China inhabitants escaping warfare and famine, to southern China. Aside from these large migratory waves, other smaller southward migrations occurred during almost all periods in the past two millennia.[49] A study by the Chinese Academy of Sciences into the gene frequency data of Han subpopulations and ethnic minorities in China, showed that Han subpopulations in different regions are also genetically quite close to the local ethnic minorities, meaning that in many cases, blood of ethnic minorities had mixed into Han, while at the same time, the blood of Han had also mixed into the local ethnic minorities.[40] A study on Armenian admixture in varied populations found 3.9% Armenian-like DNA in some northern Chinese Han.[41]

A recent, and to date the most extensive, genome-wide association study of the Han population, shows that geographic-genetic stratification from north to south has occurred and centrally placed populations act as the conduit for outlying ones.[42] Ultimately, with the exception in some ethnolinguistic branches of the Han Chinese, such as Pinghua, there is "coherent genetic structure" in all Han Chinese.[43]

Paternal lineages

Y-chromosome haplogroup O2-M122 is a common DNA marker in Han Chinese, as it appeared in China in prehistoric times. It is found in more than 50% of Chinese males, and ranging up to over 80% in certain regional subgroups of the Han ethnicity.[44] Other Y-DNA haplogroups that have been found with notable frequency in samples of Han Chinese include O-P203 (15/165 = 9.1%, 47/361 = 13.0%), C-M217 (10/168 = 6.0%, 27/361 = 7.5%, 187/1730 = 10.8%, 20/166 = 12.0%), N-M231 (6/166 = 3.6%, 18/361 = 5.0%, 117/1729 = 6.8%, 17/165 = 10.3%), O-M268(xM95, M176) (54/1147 = 4.7%,[45] 8/168 = 4.8%, 23/361 = 6.4%, 12/166 = 7.2%), and Q-M242 (2/168 = 1.2%, 49/1729 = 2.8%, 12/361 = 3.3%, 48/1147 = 4.2%[45]). However, the mitochondrial DNA (mtDNA) of Han Chinese increases in diversity as one looks from northern to southern China, which suggests that male migrants from northern China married with women from local peoples after arriving in modern-day Guangdong, Fujian, and other regions of southern China.[46][47] Despite this, tests comparing the genetic profiles of northern Han, southern Han and southern natives determined that haplogroups O1b-M110, O2a1-M88 and O3d-M7, which are prevalent in southern natives, were only observed in some southern Han (4% on average), but not in northern Han. Therefore, this proves that the male contribution of southern natives in southern Han is limited, assuming that the frequency distribution of Y lineages in southern natives represents that before the expansion of Han culture that started two-thousand years ago.[46][48] In contrast, there are consistent strong genetic similarities in the Y chromosome haplogroup distribution between the southern and northern Chinese population, and the result of principal component analysis indicates almost all Han populations form a tight cluster in their Y chromosome. However, other research has also shown that the paternal lineages Y-DNA O-M119,[49] O-P201,[50] O-P203[50] and O-M95[51] are found in both southern Han Chinese and South Chinese minorities, but more commonly in the latter. In fact, these paternal markers are in turn less frequent in northern Han Chinese.[52][53]

Maternal lineages

The mitochondrial-DNA haplogroups of the Han Chinese can be classified into the northern East Asian-dominating haplogroups, including A, C, D, G, M8, M9, and Z, and the southern East Asian-dominating haplogroups, including B, F, M7, N*, and R.[46] These haplogroups account for 52.7% and 33.85% of those in the Northern Han, respectively. Among these haplogroups, D, B, F, and A were predominant in the Northern Han, with frequencies of 25.77%, 11.54%, 11.54%, and 8.08%, respectively. However, in the Southern Han, the northern and southern East Asian-dominating haplogroups accounted for 35.62% and 51.91%, respectively. The frequencies of haplogroups D, B, F, and A reached 15.68%, 20.85%, 16.29%, and 5.63%, respectively.[38][54][55][56][57]

Genetic history of Japanese

{{main|Genetic and anthropometric studies on Japanese people}}

Y-chromosome DNA

It has been noted since as early as 1995 that the distribution of Y-chromosome DNA markers among Japanese males differs significantly from the males of neighboring populations: "The Y Alu polymorphic (YAP) element is present in 42% of the Japanese and absent in the Taiwanese, confirming the irregular distribution of this polymorphism in Asia."[58]

In 1999, a study by Tatiana M. Karafet et al. aimed at identifying the nearest Old World relatives of indigenous American Y-DNA lineages included a sample of 118 Japanese, of whom 55 or 47% were found to belong to DE-YAP(xE-SRY4064), 54 or 46% were found to belong to K-M9(xTat, SRY9138, P-DYS257), 6 or 5.1% were found to belong to C-RPS4Y, 2 or 1.7% were found to belong to P-DYS257, and 1 or 0.8% were found to belong to BT-SRY10831.1(xC-RPS4Y, DE-YAP, K-M9).[59]

A comprehensive study of worldwide Y-DNA diversity (Underhill et al. 2000) included a sample of 23 males from Japan, of whom eight (35%) belonged to haplogroup D-M174 (including one D-M15, one D-M55(xM116.2), five D-M125, and one D-M151), six (26%) belonged to O-M175(xM122, M119, M95), five (22%) belonged to O-M122 (including two O-M122(xM7, M164, M159, M121, M134), two O-M134(xM117/M133), and one O-M117/M133(xM162)), three (13%) belonged to C-M130 (including one C-M130(xM38, M48/M77/M86, M93, M8/M105/M131), one C-M93, and one C-M8/M105/M131), and one (4.3%) belonged to N-M128.[60]

Among 259 males from Japan (70 from Tokushima, 61 from Shizuoka, 53 from Kyūshū, 45 from Okinawa, 26 from Aomori, and 4 Ainus) whose Y-DNA has been examined in a 2005 study by Michael F. Hammer, ninety (34.7%) belong to haplogroup D-M55, eighty-two (31.7%) belong to haplogroup O-P31 (including 22% O-47z, 7.7% O-M176(x47z), and 1.9% O-M95(xM111)), fifty-two (20.1%) belong to haplogroup O-M122, fourteen (5.4%) belong to haplogroup C-M8, ten (3.9%) belong to haplogroup NO-M214(xO-M175) (including 2.3% NO-M214(xO-M175, N-LLY22g), 1.2% haplogroup N-LLY22g(xM128, P43, M178), and 0.4% haplogroup N-M178), and eight (3.1%) belong to haplogroup C-M217 (including 1.9% haplogroup C-M217(xM86) and 1.2% haplogroup C-M86).[9] The patrilines belonging to D-P37.1 were found in all the Japanese samples, but were more frequently found in the Ainu (75.0%) and Okinawa (55.6%) samples and less frequently found in the Tokushima (25.7%) and Kyūshū samples (26.4%).[9] Haplogroups O-M175 and C-M8 were not found in the small Ainu sample of four individuals, and C-M217 was not found in the Okinawa sample of 45 individuals.[9] Haplogroup N was detected in samples of Japanese from Aomori (2/26 N-LLY22g(xM128, P43, M178)), Shizuoka (1/61 N-LLY22g(xM128, P43, M178)), and Tokushima (1/70 N-M178), but was not found in the Kyūshū, Okinawa, or Ainu samples.[9] This study, and others, report that Y-chromosome patrilines crossed from the Asian mainland into the Japanese archipelago, and continue to make up a large proportion of the Japanese male lineage.[2] If focusing haplogroup O-P31 in those researches, the patrilines derived from its subclade O-SRY465 are frequently found in both Japanese (mean 32%,[61] with frequency in various samples ranging from 26%[62][63] to 36%[64]) and Koreans (mean 30%,[65] with frequency in various samples ranging from 19%[62][66] to 40%[64]). According to the research, these patrilines have undergone extensive genetic admixture with the Jōmon period populations previously established in Japan.[9]

A 2007 study by Nonaka et al. reported that among a total of 263 healthy unrelated Japanese male individuals born in 40 of the 47 prefectures of Japan, but especially Tokyo (n=51), Chiba (n=45), Kanagawa (n=14), Saitama (n=13), Shizuoka (n=12), and Nagano (n=11), the frequencies of the D2, O2b, and O3 lineages were 38.8%, 33.5%, and 16.7%, respectively, which constituted approximately 90% of the Japanese population. Haplogroup diversity for the binary polymorphisms was calculated to be 86.3%.[67]

Poznik et al. (2016) have reported that the males in the JPT (Japanese in Tokyo, Japan) sample[68] of the 1000 Genomes Project are 20/56 = 36% D2-M179, 18/56 = 32% O2b-M176, 10/56 = 18% O3-M122, 4/56 = 7.1% C1a1-M8, 2/56 = 3.6% O2a-K18, and 2/56 = 3.6% C2-M217.[69]

In a project approved by the Ethics Committee of Tokai University School of Medicine, Ochiai et al. (2016) have reported finding D-M174 (rs2032602 T>C) in 24/59 (40.7%), O-M268 (rs13447443 A>G) in 21/59 (35.6%), C-M130 (rs35284970 C>T) in 8/59 (13.6%), O-P198 (rs17269816 T>C) in 4/59 (6.8%), N-M231 (rs9341278 G>A) in 1/59 (1.7%), and O-P186(xM268, P198) (rs16981290 C>A, rs13447443 A, rs17269816 T) in 1/59 (1.7%) of a sample obtained through buccal swabs from Japanese male volunteers (n = 59) who had given informed consent to participate in the study.[70]

Mitochondrial DNA

According to an analysis of the 1000 Genomes Project's sample of Japanese collected in the Tokyo metropolitan area, the mtDNA haplogroups found among modern Japanese include D (42/118 = 35.6%, including 39/118 = 33.1% D4 and 3/118 = 2.5% D5), B (16/118 = 13.6%, including 11/118 = 9.3% B4 and 5/118 = 4.2% B5), M7 (12/118 = 10.2%), G (12/118 = 10.2%), N9 (10/118 = 8.5%), F (9/118 = 7.6%), A (8/118 = 6.8%), Z (4/118 = 3.4%), M9 (3/118 = 2.5%), and M8 (2/118 = 1.7%).[23]

Single-nucleotide polymorphism

A 2008 study about genome-wide SNPs of East Asians by Chao Tian et al. reported that Japanese along with other East Asians such as Joseon Koreans and Han Chinese are genetically distinguishable from Southeast Asians and that the Japanese are related to Koreans, who in turn are more closely related to Han Chinese. However, the Japanese are relatively genetically distant from Han Chinese, compared to Koreans.[71]

Immunoglobulin G

Hideo Matsumoto, professor emeritus at Osaka Medical College tested Gm types, genetic markers of immunoglobulin G, of Japanese populations for a 2009 study.[72] According to this study, the Gm ab3st gene is found at notably high frequencies across eastern Siberia, northern China, Korea, Mongolia, Japan, and Tibet.[72] The mean frequency of Gm ab3st for the mainstream Japanese population was found to be 26.0%, with a peak in the Yaeyama Islands (36.4% Yonaguni, 32.1% Ishigaki) among all populations in Japan and peaks in Akita (29.5%) and Shizunai (28.3%) among mainstream Japanese.[72] On mainland Asia, peak frequencies of Gm ab3st were found among Oroqen (44.0%) and Tungus (30.0%) in northeast China and among the north Baikal Buryats (30.7%); however, this gene is also frequent among Eskimos (25.4% Alaska, 24.7% Greenland, 20.5% Chaplin, Russia), Luoravetlans (Koryak 20.0%, Chukchi 15.3%), and Athabaskans (New Mexico Apache 19.7%, Alaska Athabascan 14.3%), and it is not uncommon even as far west as the south shore of the Caspian Sea (8.8% Gilani, 8.5% Mazanderani).[72] Minimum frequencies of Gm ab3st were found in Yakushima (22.0%) among all populations in Japan and in Tsu (23.3%) and Ōita (23.6%) among mainstream Japanese.[72] The data from small, isolated island populations, such as those of Yonaguni, Ishigaki, and Yakushima, were not used when calculating the mean for the mainstream Japanese population.[72] The study also considered Ainu and Korean populations and found Gm ab3st with a frequency of 25.2% among Ainu in Hidaka, Hokkaido and a mean frequency of 14.5% (range 13.1% Pusan, South Korea to 18.6% Yanji, China) among Koreans.[72]

Gm afb1b3, on the other hand, is a southern marker gene possibly originating in southern China on the background of the fb1b3 gene (the modal Gm type among Caucasoids) and found at very high frequencies across southern China, Southeast Asia, Taiwan, Sri Lanka, Bangladesh, Nepal, Assam, and the Pacific Islands.[72] Professor Matsumoto has remarked that the center of dispersal of the Gm afb1b3 gene may be in the Yunnan and Guangxi area of southern China; extremely high frequencies of this gene have been observed in samples of mostly Daic peoples from this region (95.2% Shui in Sandu, Guizhou, 94.2% Zhuang in Guangxi, 91.4% Bouyei in Duyun, Guizhou, 87.5% Miao in Guizhou, 84.0% Dai in Luxi, Yunnan) and from neighboring Laos (97.0% Laotian) and Thailand (89.9% Thai).[72] However, Gm afb1b3 is almost equally common among people in Malaysia (97.3% Kadazan on Borneo, 85.0% Malay), Indonesia (76.6% Sulawesi, 75.2% Java), the Philippines (83.6% Luzon Filipinos, 76.4% Luzon Negritos, 67.2% Mindanao Negritos), Karen people in Thailand (82.3%), Kacharis in Assam (80.9%), Cambodians (76.7%), Taiwanese aborigines (76.2%), Micronesians (88.7%), Melanesians (74.6%), and Polynesians (74.7% Cook Islands, 69.4% Hawaii).[72] The study found that the mean frequency of Gm afb1b3 was 10.6% (range 7.8% Shizunai to 13.0% Osaka) for the general Japanese population. Minimum frequencies (4.0% to 4.4%) of Gm afb1b3 were found among the native people in the Yaeyama and Miyako islands in the extreme south of Japan and among the Ainu (4.3%) in the extreme north of Japan. The author suggested that the somewhat elevated frequency of the Gm afb1b3 gene among the mainstream Japanese compared to the Sakishima islanders and the Ainu may have resulted from some admixture of the mainstream Japanese population at rates as low as 7–8% with southern Asian (from southern China or Southeast Asia as far west as Bangladesh and Nepal) populations having the Gm afb1b3 gene in high frequency.[72]

The other Gm types observed among Japanese are ag (45.8%) and axg (17.6%), which are not so useful for discerning human migrations and genetic relationships because they appear to be retained from a common ancestor of most modern humans and are found in similar proportions (with the frequency of ag being significantly greater than the frequency of axg) in many populations all over the world (aboriginal Australians and Americans, South Asians, Caucasoids, etc.).[72]

Genetic components from other Asian populations

A 2017 study conducted by Fumihiko Takeuchi, Tomohiro Katsuya, Ryosuke Kimura and Norihiro Kato compared three genetically distinct Japanese groups, Hondu (Honshu), Ryukyu and Ainu to 26 other Asian populations to analyze the shared ancestry and genetic differentiation between the Japanese people and other Asians.[73] The study revealed for the Japanese as a whole, some genetic components from all of the Central, East, Southeast and South Asian populations are prevalent in the Japanese population with the major components of ancestry profile coming from the Korean and Han Chinese clusters.[73] The major components of the Japanese Hondo cluster is similar to the Korean (87–94%), followed by Han Chinese 1 (0–8%) clusters.[73] The genetic components from the Southeast Asian (Thais, Vietnamese and Malays) and South Asian (Sinhalese and Tamils) clusters were larger for the Ryukyu cluster – Southeast Asian (4–6%) and South Asian (4–6%) – in comparison to the results found in the Hondo cluster – Southeast Asian (0–1%) and South Asian (1–2%). They found out that the modern Hondo-Japanese ancestry can be grouped in three groups: Two East-Asian clusters (Korean(49%) and Southeast Asian(8%)) and one Japan specific group (likely representing the Jomon ancestry with 43%). The Ryukyuan ancestry has in contrast 75% Japan specific ancestry.[73]

A Japanese research team concluded in 2018 that they will make one of the greatest DNA tests about the origin of the Japanese people. Currently they already know that the Jomon-population show strong northern and siberian genetic material, while the Yayoi-population is closer to East-Asians and populations in today Southeast-Asia.[74][75]

In an interview during the science-news on the Japanese public broadcasting organisation NHK about ancient Jomon DNA, scientists say that modern Japanese have about 20% Jomon genome. The scientists are still unsure about the ultimate origin of the Jomon people. Some suggest that they split early from the East-Asian group, others maintain the theory of a Siberian origin.[25]

Genetic history of Koreans

Studies of polymorphisms in the human Y-chromosome have so far produced evidence to suggest that the Korean people have a long history as a distinct, mostly endogamous ethnic group, with successive waves of people moving to the peninsula and three major Y-chromosome haplogroups.[76] The reference population for Koreans used in Geno 2.0 Next Generation is 94% Eastern Asia and 5% Southeast Asia & Oceania.[77]

Among the populations of East Asia, the Italian-born American geneticist Cavalli-Sforza of Stanford University placed Koreans in a cluster of populations including the Japanese, Ryukyuans, Ainus, Tibetans, and Bhutanese, with smallest genetic distance from the Ryukyuans and the Japanese from Hokkaido.[117] In a broader comparison and principal component analysis of populations from every region of Asia, the aforementioned cluster is subsumed in a Northeast and East Asian cluster that also includes the Mongol samples and, at somewhat greater distance, the North Chinese, Northern Tungus, Samoyeds, and Luoravetlans.[78][79][46][47]

Jin Han-jun et al. (1999) said that, based on genetic studies of classic genetic markers of protein and nuclear DNA, Koreans tend to be closely genetically related to Mongols among East Asians, which is supported by the following studies: Goedde et al. (1987); Saha & Tay (1992); Hong et al. (1993); and Nei & Roychoudhury (1993). The study said that the mtDNA 9‐bp deletion frequency in the intergenic COII/tRNALys region of Mongols (5.1%) is lower than that of Chinese (14.2%), Japanese (14.3%) and Koreans (15.5%). The study said that these 9‐bp deletion frequencies suggest that Koreans are closely related to Japanese and Chinese and that Koreans are not so closely related to Mongols. The study said that the homogeneity in the 9-bp deletion frequencies among Chinese (14.2%), Japanese (14.3%) and Koreans (15.5%), only spanning from a low of 14.2% for Chinese to a high of 15.5% for Koreans, indicates that very few mtDNA are differentiated in these three populations. The study said that the 9‐bp deletion frequencies for Vietnamese (23.2%) and Indonesians (25.0%), which are the two populations constituting Mongoloid Southeast Asians in the study, are relatively high frequencies when compared to the 9-bp deletion frequencies for Mongols(5.1%), Chinese (14.2%), Japanese (14.3%) and Koreans (15.5%), which are the four populations constituting Northeast Asians in the study. The study said that these 9-bp deletion frequencies are consistent with earlier surveys which showed that 9-bp deletion frequencies increase going from Japan to mainland Asia to the Malay Peninsula, which is supported by the following studies: Horai et al. (1987); Hertzberg et al. (1989); Stoneking & Wilson (1989); Horai (1991); Ballinger et al. (1992); Hanihara et al. (1992); and Chen et al. (1995). The study said that Cavalli-Sforza's chord genetic distance (4D), from Cavalli-Sforza & Bodmer (1971), which is based on the allele frequencies of the intergenic COII/tRNALys region, showed that Koreans are more genetically related to Japanese than Koreans are genetically related to the other East Asian populations which were surveyed. The Cavalli-Sforza's chord genetic distance (4D) between Koreans and other East Asian populations in the study, from least to greatest, are as follows: Korean to Japanese (0.0019), Korean to Chinese (0.0141), Korean to Vietnamese (0.0265), Korean to Indonesian (0.0316) and Korean to Mongols (0.0403). The study said that the close genetic affinity between present-day Koreans and Japanese is expected due to the Yayoi migration from China and the Korean Peninsula to Japan which began about 2,300 years ago, a migration which is supported by the following studies: Chard (1974); Hanihara (1991); Hammer & Horai (1995); Horai et al. (1996); Omoto & Saitou (1997). The study said that Horai et al. (1996) detected mtDNA D-loop variation which supports the idea that a large amount of maternal lineages came into Japan from immigrants from the Korean Peninsula after the Yayoi period.[80]

Wook et al. (2000) said that Chu et al. (1998) found that phylogeny which was based on 30 microsatellites indicated that Korean people were closely related to Chinese people from Manchuria and Yunnan, but Kim Wook et al. (2000) found that the high incidence of the DXYS156Y-null variant in northeast Chinese implied that it is possible to exclude these northeastern Chinese populations from being sources which are significant in Korean people. The phylogenetic analysis done by Wook et al. (2000) indicated that Japanese people are genetically closer to Korean people than Japanese people are genetically related to any of the following peoples: Mongolians, Chinese, Vietnamese, Indonesians, Filipinos and Thais. The study said that mainland Japanese having Koreans as their closest genetic population is consistent with the following previous studies: Hammer and Horai (1995); Horai et al. (1996); and Kim et al. (1998). The study found that Koreans are more genetically homogenous than the Japanese, and the study said that this might be due to different sizes of the founding populations and range expansions. The study said that the moderate mean Y-chromosome haplotype diversity value for Koreans might be the result of migrations from East Asia that had a homogenizing influence. The study said that it is more probable that Koreans descend from dual infusions of Y-chromosomes from two different waves of East Asians rather than a single East Asian population due to the dual patterns of the Y-chromosome haplotype distribution found in Koreans.[81]

Jin Han-jun et al. (2003) said that the distribution of Y-chromosomal haplogroups shows that Koreans have a complex origin that results from genetic contributions from range expansions, most of which are from southern-to-northern China, and genetic contributions from the northern Asian settlement.[62]

Kim Jong-jin et al. (2005) did a study about the genetic relationships among East Asians based on allele frequencies, particularly focusing on how close Chinese, Japanese and Koreans are genetically related to each other. Most Koreans were hard to distinguish from Japanese, and the study was not able to clearly distinguish Koreans and Japanese. Koreans and Japanese clustered together in the principal component analysis and the best least-squares tree. The study said that "[c]ommon ancestry and/or extensive gene flow" historically between Koreans and Japanese appears to be "likely" and results in a lot of difficulty finding population-specific alleles that could assist in differentiating Koreans and Japanese.[82]

Hideo Matsumoto, professor emeritus at Osaka Medical College, tested Gm types, genetic markers of immunoglobulin G, of Korean populations for a 2009 study. The Korean populations were populations in Jeju Island, Busan, Gwangju, Kongsan, Jeonju, Wonju, the Kannung of South Korea and a Korean population in Yanji. Matsumoto said that the Gm ab3st gene is a marker for northern Mongoloid possibly originating in Siberia and found at high frequencies across northeast Asia and Tibet. Matsumoto said that the average frequency of Gm ab3st for Koreans was 14.5% which was intermediate between an average frequency of 26% for general Japanese and a frequency of 11.7% which was for a Han Chinese population in Beijing. Matsumoto said that Gm afb1b3 is a southern marker gene possibly originating in southern China and found at high frequencies across Southeast Asia, southern China, Taiwan, Sri Lanka, Bangladesh, Nepal, Assam and parts of the Pacific. However, given the result that the Okinawans being genetically most northern among the Japanese with the highest frequency of the Gm ab3st gene which is assigned to be northern, the term northern and southern used in his study is controversial. Matsumoto said that the average frequency of Gm afb1b3 for Koreans was 14.7% which was intermediate between a frequency of 10.6% for general Japanese and a frequency of 24.1% for Beijing Han Chinese. Matsumoto said that Koreans displayed the northern Mongoloid pattern, but Matsumoto said that Koreans displayed a higher frequency of the southern marker gene, Gm afb1b3, than the Japanese. Matsumoto said that "Japanese and Korean populations were originally identical or extremely close to each other", and Matsumoto said, "It seemed to be during the formation of the contemporary Korean population that such a Gm pattern intermediate between Japanese and the northern Han in China emerged." Matsumoto said that the different Gm pattern between Japanese and Koreans most likely came about from frequent inflows of Chinese and/or northern populations into the Korean Peninsula.[83]

He Miao et al. (2009) created an artificial combination of equal parts of the Y-chromsomes of the HapMap samples of Han Chinese in Beijing and Japanese in Tokyo. The study said that this artificial combination resembled five populations which included Koreans in South Korea and Koreans in China.[84]

Jung Jongsun et al. (2010) used the following Korean samples for a study: Southeast Korean (sample regions: Gyeongju, Goryeong and Ulsan), Middle West Korean (sample regions: Jecheon, Yeoncheon, Cheonan and Pyeongchang) and Southwest Korean (sample regions: Gimje, Naju and Jeju). Due to political reasons, the study said that it did not use North Korean samples, but the study said that the "historical migration event of BaekJae from Goguryeo Empire (BC37–AD568) in Northern Korea imply that Northern lineages remain in South Korea." The study said that the "Northern people of the Goguryeo Empire" are closely related to Mongolians, and the study said that this group of people ruled most of Southwest Korea. The study said that "some of the royal families and their subjects in the Goguryeo Empire moved to this region and formed the BaekJae Empire in BC18–22." Southwest Koreans are closer to Mongolians in the study's genome map than the other two Korean regions in the study are close to Mongolians. Southwest Koreans also display genetic connections with the HapMap sample of Japanese in Tokyo, and, in the neighbor joining tree, the nodes for Southwest Korea are close to Japan. In the study's Korea-China-Japan genome map, some Southwest Korean samples overlap with samples from Japan. The study said that the fairly close relationship, in both the study's genetic structure analysis and genome map, of the Jeju Southwest Korean sample and the HapMap sample of Japanese in Tokyo, Japan, has made the evolutionary relationship of Chinese, Japanese and Koreans become clearer. Southeast Koreans display some genetic similarity with people of Kobe, Japan, which indicates that there might have been links between these regions. The study said that it is possible that outliers in the Gyeongju sample, one of the sampled Southeast Korean regions, and outliers in the Kobe, Japan, sample both have Siberian lineage due to Southeast Koreans having connections with Siberian lineages with respect to grave patterns and culture. The overall result for the study's Korea-Japan-China genome map indicates that some signals for Siberia remain in Southeast Korea. In contrast to the Gyeongju sample, the Goryeong and Ulsan samples, which are both Southeast Korean samples, displayed average signals for the Korean Peninsula. The study said that Middle West Korea was a melting pot in the Korean Peninsula with people traveling from North to South, South to North, and people traveling from East China, including from the Shandong Peninsula. Western Chinese, which included those in the Shandong Peninsula, travelled across the Yellow Sea, and these Western Chinese lived and traded in both China and Korea. In the study's genome map, Middle West Koreans are close to the HapMap sample of Han Chinese in Beijing and, in the neighbor joining tree, the nodes for Middle West Korea are close to China. The overall result for the study's Korea-Japan-China genome map indicates that Middle West Korea displays an average signal for South Korea. Chinese people are located between Korean and Vietnamese people in the study's genome map.[85][86]

Kim Young-jin and Jin Han-jun (2013) said that principal component analysis had Korean HapMap samples clustering with neighboring East Asian populations which were geographically nearby them such as the Chinese and Japanese. The study said that Koreans are genetically closely related to Japanese in comparison to Koreans' genetic relatedness to other East Asians which included the following East and Southeast Asian peoples: Tujia, Miao, Daur, She, Mongols, Naxi, Cambodians, Oroqen, Yakuts, Yi, Southern Han Chinese, Northern Han Chinese, Hezhen, Xibo, Lahu, Dai and Tu. The study said that the close genetic relatedness of Koreans to Japanese has been reported in the following previous studies: Kivisild et al. (2002); Jin et al. (2003); Jin et al. (2009); and Underhill and Kivisild (2007). The study said that Jung et al. (2010) said that there is a genetic substructure in Koreans, but the study said that it found Korean HapMap individuals to be highly genetically similar. The study said that Jin et al. (2009) found that Koreans from different populations are not different in a significant way which indicates that Koreans are genetically homogenous. The study said that the affinity of Koreans is predominately Southeast Asian with an estimated admixture of 79% Southeast Asian and 21% Northeast Asian for Koreans, but the study said that this does not mean that Koreans are heterogenous, because all of the Koreans which were analyzed uniformly displayed a dual pattern of Northeast Asian and Southeast Asian origins. The study said that Koreans and Japanese displayed no observable difference between each other in their proportion of Southeast Asian and Northeast Asian admixture. The study said the 79% Southeast Asian and 21% Northeast Asian admixture estimate for Koreans is consistent with the interpretation of Jin et al. (2009) that Koreans descend from a Northeast Asian population which was subsequently followed by a male-centric migration from the southern region of Asia which changed both the autosomal composition and Y-chromosomes in the Korean population.

Veronika Siska et al. (2017) said that the Ulchi people are genetically closest in the study's panel to the human remains from the Devil's Gate Cave which are dated to about 7,700 years ago. Modern Korean and Japanese, the Oroqen people and the Hezhen people display a high affinity to the human remains from Devil's Gate Cave. Considering the geographic distance of Amerindians from Devil's Gate Cave, Amerindians are unusually genetically close to the human remains from Devil's Gate Cave. Korean genomes display similar traits to Japanese genomes on genome-wide SNP data. In an admixture analysis, when the genes of Devil's Gate is made into a unique genetic component, this new Devil's Gate genetic component is highest in peoples of the Amur Basin, including Ulchi, and makes up about more than 50% of Koreans and Japanese. It also has a sporadic distribution among other East Asians, Central Asians and Southeast Asians.[87]

Paternal lineage

Korean males display a high frequency of Haplogroup O-M176 (O1b2, formerly O2b), a subclade that probably has spread mainly from somewhere in the Korean Peninsula or its vicinity,[131][88] and Haplogroup O-M122 (O2, formerly O3), a common Y-DNA haplogroup among East and Southeast Asians in general.[89][46] Haplogroup O1b2-M176 has been found in approximately 30% (ranging from 20%[62][90] to 37%[9]) of sampled Korean males, while haplogroup O2-M122 has been found in approximately 40% of sampled Korean males.[90][91][66] Korean males also exhibit a moderate frequency (approximately 15%) of Haplogroup C-M217.

About 2% of Korean males belong to Haplogroup D-M174 (0/216 = 0.0% DE-YAP,[66] 3/300 = 1.0% DE-M145,[92] 1/68 = 1.5% DE-YAP(xE-SRY4064),[90] 8/506 = 1.6% D1b-M55,[93] 3/154 = 1.9% DE, 18/706 = 2.55% D-M174,[94] 5/164 = 3.0% D-M174[64] 1/75 D1b*-P37.1(xD1b1-M116.1) + 2/75 D1b1a-M125(xD1b1a1-P42) = 3/75 = 4.0% D1b-P37.1,[9] 3/45 = 6.7% D-M174[95]). The D1b-M55 subclade has been found with maximal frequency in a small sample (n=16) of the Ainu people of Japan, and is generally frequent throughout the Japanese Archipelago.[96] Other haplogroups that have been found less commonly in samples of Korean males are Y-DNA haplogroup N-M231 (approx. 4%), haplogroup O-M119 (approx. 3%), haplogroup O-M268(xM176) (approx. 2%), haplogroup Q-M242 and Haplogroup R1 (approx. 2% total), J, Y*(xA, C, DE, J, K), L, C-RPS4Y(xM105, M38, M217), and C-M105.[93][90][93]

Korea Foundation Associate Professor of History, Eugene Y. Park, said that there is no correlation between a Korean person's Y-chromosome DNA haplogroup and their surname or ancestral seat.[97][98]

Maternal lineage

Studies of Korean mitochondrial DNA lineages have shown that there is a high frequency of Haplogroup D4, ranging from approximately 23% (11/48) among ethnic Koreans in Arun Banner, Inner Mongolia[99] to approximately 32% (33/103) among Koreans from South Korea.[63][100] Haplogroup D4 is the modal mtDNA haplogroup among Koreans and among East Asians in general. Haplogroup B, which occurs very frequently in many populations of Southeast Asia, Polynesia, and the Americas, is found in approximately 10% (5/48 ethnic Koreans from Arun Banner, Inner Mongolia) to 20% (21/103 Koreans from South Korea) of Koreans.[99][100] Haplogroup A has been detected in approximately 7% (7/103 Koreans from South Korea) to 15% (7/48 ethnic Koreans from Arun Banner, Inner Mongolia) of Koreans.[99][100][63] Haplogroup A is the most common mtDNA haplogroup among the Chukchi, Eskimo, Na-Dene, and many Amerind ethnic groups of North and Central America.

The other half of the Korean mtDNA pool consists of an assortment of various haplogroups, each found with relatively low frequency, such as G, N9, Y, F, D5, M7, M8, M9, M10, M11, R11, C, and Z.

A study of the mtDNA of 708 Koreans sampled from six regions of South Korea (134 from Seoul-Gyeonggi, 118 from Jeolla, 117 from Chungcheong, 114 from Gangwon, 113 from Jeju, and 112 from Gyeongsang) found that they belonged to haplogroup D (35.5%, including 14.7% D4(xD4a, D4b), 7.8% D4a, 6.5% D5, 6.4% D4b, and 0.14% D(xD4, D5)), haplogroup B (14.8%, including 11.0% B4 and 3.8% B5), haplogroup A (8.3%), haplogroup M7 (7.6%), haplogroup F (7.1%), haplogroup M8'CZ (6.5%), haplogroup G (6.1%), haplogroup N9a (5.2%), haplogroup Y (3.8%), haplogroup M9 (2.7%), haplogroup M10 (1.6%), haplogroup M11 (0.42%), haplogroup N(xN9, Y, A, F, B4, B5) (0.28%), and haplogroup N9(xN9a) (0.14%).[101]

Genetic history of Mongolians

The Mongols are an ethnic group in northern China, Mongolia, parts of Siberia and Western Asia. They are believed to be the descendants of the Xianbei and the proto-Mongols. The former term includes the Mongols proper (also known as the Khalkha Mongols), Buryats, Oirats, the Kalmyk people and the Southern Mongols. The latter comprises the Abaga Mongols, Abaganar, Aohans, Baarins, Gorlos Mongols, Jalaids, Jaruud, Khishigten, Khuuchid, Muumyangan and Onnigud. The Daur people are descedants of the para-Mongolic Khitan people.[102]

Paternal lineages

The majority of Mongolians belong to the y-DNA Haplogroup C-M217. Haplogroup O-M175 and Haplogroup N-M231 are found at a medium rate. Some Mongolians carried the Haplogroup D-M174 and Haplogroup R1a.[103]

Maternal lineages

The maternal haplogroups are diverse but similar to other northern Asian populations. the most common maternal haplogroups in Mongolians are haplogroup D4, Haplogroup A, and Haplogroup B.[104]

Autosomal DNA

A study analysing the genome of modern Mongolians, Turkic people and ancient Xiongnu and Xianbei individuals support the view that Mongolians are one homogenous ethnic group and descedant from the earlier inhabidants (Xiongnu and Xianbei). The study further concludes that modern Kazakhs are genetically close to Mongolian ethnic groups. Mongolians show relations to other East Asians and Siberians.[105]

Genetic history of Tibetans

Modern Tibetan populations are genetically most similar to other modern East Asian populations.[168] They also show more genetic affinity for modern Central Asian than modern Siberian populations.[168]

A 2016 study found that the Tibetan gene pool diverged from that of Han Chinese around 15,000 to 9,000 years ago, which can be largely attributed to post-LGM (Last Glacial Maximum) arrivals. Analysis of around 200 contemporary populations showed that Tibetans share ancestry with populations from East Asia (~82%), Central Asia and Siberia (~11%), South Asia (~6%), and western Eurasia and Oceania (~1%). These results support that Tibetans arose from a mixture of multiple ancestral gene pools but that their origins are much more complicated and ancient than previously suspected.[106]

Relationship to other populations

A study in 2010 suggested that the majority of the Tibetan gene pool may have diverged from the Zang around 15,000 years ago.[107] However, there are possibilities of much earlier human inhabitation of Tibet,[108][109] and these early residents may have contributed to the modern Tibetan gene pool.[110]

The date of divergence between Tibetans and Sherpas was estimated to have taken place around 11,000 to 7,000 years ago.[106]

Relationship to archaic hominins

After modern Oceanic populations, modern Tibetan populations show the highest rate of allele sharing with archaic hominins at over 6%.[106] Modern Tibetans show genetic affinities to three archaic populations: Denisovans, Neanderthals, and an unidentified archaic population.[106]

In comparison to modern Han populations, modern Tibetans show greater genetic affinity to Denisovans; however, both the Han and Tibetans have similar ratios of genetic affinity to general Neanderthal populations.[106]

Modern Tibetans were identified as the modern population that has the most alleles in common with Ust'-Ishim man.[106]

Haplogroup distribution

The distribution of Haplogroup D-M174 (subclade Haplogroup D-Z27276) is found among nearly all the populations of Central Asia and Northeast Asia south of the Russian border, although generally at a low frequency of 2% or less. A dramatic spike in the frequency of D-M174 occurs as one approaches the Tibetan Plateau. D-M174 is also found at high frequencies among Japanese people, but it fades into low frequencies in Korea and China proper between Japan and Tibet. The claim that the Navajo people and Tibetans are related, while discussed among linguists since Edward Sapir, has not found support in genetic studies. Some light has been shed on their origins, however, by one genetic study[111] in which it was indicated that Tibetan Y-chromosomes had multiple origins, one from Central Asia and the other from East Asia.

Genetic history of Turks

The Turkic peoples are a collection of ethno-linguistic groups of Central-, Eastern-, Northern- and Western-Asia as well as parts of Europe and North Africa. They speak related languages belonging to the Turkic language family. The original homeland of the Turkic peoples is believed to be in northern China, Mongolia or Manchuria. Most Turkic groups were closely related to other Mongoloid populations of Asia and the Americas. They shared especially close relations to Mongolians, Han-Chinese and other Siberians.[112] During the conquest of Central-Asia some groups assimilated local Indo-European nomads.[113][114][115]

Paternal lineages

Common yDNA haplogroups in Turkic peoples are Haplogroup N-M231, Haplogroup C-M217, Haplogroup Q-M242 and Haplogroup O-M175. Some groups also have Haplogroup R1b, Haplogroup J-M172 and Haplogroup D-M174. Ancient samples show that Turks have mostly East-Asian lineages, similar to Mongolian and Han-Chinese samples.[116]

Maternal lineages

According to mitochondrial DNA studies, most mtDNA haplogroups are shared with other East-Asians. West-Asian and European samples are in minority, but can reach up to 41%.[117]

Anatolian/European Turks

The modern Turkic groups in Anatolia (Turkey) and Europe have less relation to East-Asian groups than their Central-Asian relatives. Various studies estimate about 15-30% East-Asian lineages in Anatolian/European Turks with the average at 21.7%.[118] Some few individuals nevertheless have up to 70% East-Asian lineages.

References

1. ^{{cite web | first1 = Miura | last1 = Sukeyuki | first2 = Shinoda | last2 = Kenichi | name-list-format = vanc | title = The Origins of Japanese Culture Uncovered Using DNA ― What happens when we cut into the world of the Kojiki myths using the latest science | url= https://sp.japanpolicyforum.jp/archives/culture/pt20160603213440.html |date=2016-06-03|website=Discuss Japan-Japan Foreign Policy Forum|access-date=2019-01-21 }}
2. ^{{cite journal | vauthors = Travis J | title = Jomon Genes: Using DNA, researchers probe the genetic origins of modern japanese. | journal = Science News | date = February 1997 | volume = 151 | issue = 7 | pages = 106–7 | doi = 10.2307/3980542 | jstor = 3980542 }}
3. ^{{cite book|title=The History and Geography of Human Genes|last1=Cavalli-Sforza|first1=Luigi Luca|last2=Menozzi|first2=Paolo|last3=Piazza|first3=Alberto | name-list-format = vanc |publisher=Princeton University Press|year=1994|isbn=978-0-691-08750-4|location=New Jersey}}
4. ^{{cite web|url=http://hyoka.ofc.kyushu-u.ac.jp/search/details/K004780/english.html|title=The Ainu and Jomon Connection: Kyushu University [Noriko Seguchi (Associate Professor) Faculty of Social and Cultural Studies, Department of Environmental Changes] |website=hyoka.ofc.kyushu-u.ac.jp |access-date=2018-12-23}}
5. ^Powell, Joseph F.; Rose, Jerome C. "Report on the Osteological Assessment of the Kennewick Man Skeleton (CENWW.97.Kennewick)". National Park Service. Retrieved September 10, 2011.
6. ^{{Cite web|url=https://de.scribd.com/document/154537931/Out-of-Sunda-by-Jomon-Japanese|title=Out of Sunda by Jomon Japanese {{!}} Southeast Asia {{!}} Earth & Life Sciences|website=Scribd|access-date=2017-07-05}}
7. ^{{cite journal|vauthors=Kanzawa-Kiriyama H, Saso A, Suwa G, Saitou N|date=2013|title=Ancient mitochondrial DNA sequences of Jomon teeth samples from Sanganji, Tohoku district, Japan |journal=Anthropological Science|volume=121|issue=2|pages=89–103 |doi=10.1537/ase.121113 }}
8. ^{{cite journal | vauthors = Hanihara K | title = Origins and affinities of Japanese viewed from cranial measurements | journal = Acta Anthropogenetica | volume = 8 | issue = 1–2 | pages = 149–58 | year = 1984 | pmid = 6537211 }}
9. ^10 11 {{cite journal | vauthors = Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M, Horai S | title = Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes | journal = Journal of Human Genetics | volume = 51 | issue = 1 | pages = 47–58 | date = 2006 | pmid = 16328082 | doi = 10.1007/s10038-005-0322-0 }}
10. ^{{cite journal | vauthors = Rasteiro R, Chikhi L | title = Revisiting the peopling of Japan: an admixture perspective | journal = Journal of Human Genetics | volume = 54 | issue = 6 | pages = 349–54 | date = June 2009 | pmid = 19424284 | doi = 10.1038/jhg.2009.39 }}
11. ^{{cite journal | vauthors = He Y, Wang WR, Xu S, Jin L, Snp Consortium PA | title = Paleolithic Contingent in Modern Japanese: Estimation and Inference using Genome-wide Data | journal = Scientific Reports | volume = 2 | issue = 355 | pages = 355 | date = 2012 | pmid = 22482036 | pmc = 3320058 | doi = 10.1038/srep00355 }}
12. ^{{cite journal|author=Youichi Sato|display-authors=etal|date=2014|title=Overview of genetic variation in the Y chromosome of modern Japanese males|journal=Anthropological Science|volume=122|issue=3|pages=131–136|doi=10.1537/ase.140709}}
13. ^{{cite journal | vauthors = Kanzawa-Kiriyama H, Kryukov K, Jinam TA, Hosomichi K, Saso A, Suwa G, Ueda S, Yoneda M, Tajima A, Shinoda KI, Inoue I, Saitou N | display-authors = 6 | title = A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan | journal = Journal of Human Genetics | volume = 62 | issue = 2 | pages = 213–221 | date = February 2017 | pmid = 27581845 | pmc = 5285490 | doi = 10.1038/jhg.2016.110 }}
14. ^{{Cite web|url=https://www.yomiuri.co.jp/fukayomi/20171214-OYT8T50003/|title=「縄文人」は独自進化したアジアの特異集団だった! : 深読み|date=2017-12-15|website=読売新聞オンライン|language=ja|access-date=2019-02-21}}
15. ^崎谷満 (2009)『DNA・考古・言語の学際研究が示す新・日本列島史』勉誠出版 (in Japanese) 
16. ^崎谷満『DNA・考古・言語の学際研究が示す新・日本列島史』(勉誠出版 2009年)(in Japanese)
17. ^篠田謙一『日本人になった祖先たち—DNAから解明するその多元的構造』日本放送出版協会・NHKブックス、2007年 (in Japanese)
18. ^{{cite journal|display-authors=6|vauthors=Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Hattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H|date=October 2004|title=Mitochondrial genome variation in eastern Asia and the peopling of Japan|journal=Genome Research|volume=14|issue=10A|pages=1832–50|doi=10.1101/gr.2286304|pmc=524407|pmid=15466285}}
19. ^{{cite journal|vauthors=Adachi N, Shinoda K, Umetsu K, Matsumura H|date=March 2009|title=Mitochondrial DNA analysis of Jomon skeletons from the Funadomari site, Hokkaido, and its implication for the origins of Native American|journal=American Journal of Physical Anthropology|volume=138|issue=3|pages=255–65|doi=10.1002/ajpa.20923|pmid=18951391}}
20. ^{{cite journal|vauthors=Shinoda KI, Kakuda DN, Doi N|date=2012|title=Mitochondrial DNA polymorphisms in late Shell midden period skeletal remains excavated from two archaeological sites in Okinawa|url=https://www.kahaku.go.jp/research/publication/anthropology/download/38/BNMNS_D38_51-61.pdf|journal=Bulletin of the National Museum of Nature and Science, Series D|volume=38|pages=51–61|access-date=5 February 2017}}
21. ^{{cite journal|vauthors=Hinoda KI, Kakuda T, Doi N|date=2013|title=Ancient DNA Analyses of Human Skeletal Remains from the Gusuku Period in the Ryukyu Islands, Japan|url=https://www.kahaku.go.jp/research/publication/anthropology/download/39/BNMNS_D39_1-8.pdf|journal=Bulletin of the National Museum of Nature and Science, Series D|volume=39|pages=1–8|access-date=5 February 2017}}
22. ^{{cite journal|vauthors=Adachi N, Shinoda K, Umetsu K, Kitano T, Matsumura H, Fujiyama R, Sawada J, Tanaka M|date=November 2011|title=Mitochondrial DNA analysis of Hokkaido Jomon skeletons: remnants of archaic maternal lineages at the southwestern edge of former Beringia|journal=American Journal of Physical Anthropology|volume=146|issue=3|pages=346–60|doi=10.1002/ajpa.21561|pmid=21953438}}
23. ^{{cite journal | vauthors = Zheng HX, Yan S, Qin ZD, Wang Y, Tan JZ, Li H, Jin L | title = Major population expansion of East Asians began before neolithic time: evidence of mtDNA genomes | journal = PloS One | volume = 6 | issue = 10 | pages = e25835 | date = 2011 | pmid = 21998705 | pmc = 3188578 | doi = 10.1371/journal.pone.0025835 }}
24. ^{{cite journal | vauthors = Adachi N, Shinoda K, Umetsu K, Matsumura H | title = Mitochondrial DNA analysis of Jomon skeletons from the Funadomari site, Hokkaido, and its implication for the origins of Native American | journal = American Journal of Physical Anthropology | volume = 138 | issue = 3 | pages = 255–65 | date = March 2009 | pmid = 18951391 | doi = 10.1002/ajpa.20923 }}
25. ^{{cite web | work = NHK (Japan Broadcasting |title=The Leading Edge: Japanese Ancestry Shown in Jomon DNA - Science View - Video On Demand | language = English |url= https://www3.nhk.or.jp/nhkworld/en/vod/scienceview/2015170/|access-date=2019-01-19}}
26. ^Ancient genomic DNA analysis of Jomon people; Kanzawa-Kiriyama Hideaki. DOCTOR OF PHILOSOPHY. Department of Genetics. 2013/2018
27. ^{{cite journal |last1=Nakazawa |first1=Yuichi |title=On the Pleistocene Population History in the Japanese Archipelago |journal=Current Anthropology |date=December 2017 |volume=58 |issue=S17 |pages=S539–S552 |doi=10.1086/694447 |hdl=2115/72078 }}
28. ^{{cite news |url=http://www.asahi.com/ajw/articles/AJ201803120039.html|title=DNA-based study reconstructs face of woman from 3,800 years ago |website=The Asahi Shimbun |first=Suichi |last=Doi | name-list-format = vanc |date=March 12, 2018 }}
29. ^{{cite web|url=http://global.britannica.com/topic/Xiongnu|title=Xiongnu People|website=britannica.com|publisher=Encyclopædia Britannica|access-date=25 July 2015}}
30. ^di Cosmo 2004: 186
31. ^{{cite journal | vauthors = Keyser-Tracqui C, Crubézy E, Ludes B | title = Nuclear and mitochondrial DNA analysis of a 2,000-year-old necropolis in the Egyin Gol Valley of Mongolia | journal = American Journal of Human Genetics | volume = 73 | issue = 2 | pages = 247–60 | date = August 2003 | pmid = 12858290 | pmc = 1180365 | doi = 10.1086/377005 }}
32. ^Lihongjie, Y-Chromosome Genetic Diversity of the Ancient North Chinese populations, Jilin University-China (2012)
33. ^Anthropology of Archaeological Populations from East- and Central-Asia* 
34. ^{{cite journal | vauthors = Zhao YB, Zhang Y, Zhang QC, Li HJ, Cui YQ, Xu Z, Jin L, Zhou H, Zhu H | title = Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago | journal = PLOS One | volume = 10 | issue = 5 | pages = e0125676 | date = 2015-05-04 | pmid = 25938511 | pmc = 4418768 | doi = 10.1371/journal.pone.0125676 | bibcode = 2015PLoSO..1025676Z }}
35. ^{{cite journal | vauthors = Changchun Y, Li X, Xiaolei Z, Hui Z, Hong Z | title = Genetic analysis on Tuoba Xianbei remains excavated from Qilang Mountain Cemetery in Qahar Right Wing Middle Banner of Inner Mongolia | journal = FEBS Letters | volume = 580 | issue = 26 | pages = 6242–6 | date = November 2006 | pmid = 17070809 | doi = 10.1016/j.febslet.2006.10.030 }}
36. ^{{cite journal | vauthors = Yu CC, Zhao YB, Zhou H | title = Genetic analyses of Xianbei populations about 1,500–1,800 years old | journal = Genetika | volume = 50 | issue = 3 | pages = 353–9 | date = March 2014 | pmid = 25438556 }}
37. ^{{cite journal | vauthors = Wang Y, Lu D, Chung YJ, Xu S | title = Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations | journal = Hereditas | volume = 155 | issue = 1 | pages = 19 | date = 2018-04-06 | pmid = 29636655 | pmc = 5889524 | doi = 10.1186/s41065-018-0057-5 }}
38. ^{{cite journal|vauthors=Zhao YB, Zhang Y, Zhang QC, Li HJ, Cui YQ, Xu Z, Jin L, Zhou H, Zhu H|date=2015|title=Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago|journal=PLOS One|volume=10|issue=5|pages=e0125676|doi=10.1371/journal.pone.0125676|pmc=4418768|pmid=25938511}}
39. ^{{cite journal|vauthors=Li J, Zeng W, Zhang Y, Ko AM, Li C, Zhu H, Fu Q, Zhou H|date=December 2017|title=Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese|journal=BMC Evolutionary Biology|volume=17|issue=1|pages=239|doi=10.1186/s12862-017-1082-0|pmc=5716020|pmid=29202706}}
40. ^{{cite journal|vauthors=Du R, Xiao C, Cavalli-Sforza LL|date=December 1997|title=Genetic distances between Chinese populations calculated on gene frequencies of 38 loci|journal=Science in China Series C: Life Sciences|volume=40|issue=6|pages=613–21|doi=10.1007/BF02882691|pmid=18726285}}
41. ^{{Cite web|url=http://admixturemap.paintmychromosomes.com/|title=World ancestry|website=admixturemap.paintmychromosomes.com|access-date=2016-02-09}}
42. ^{{cite journal|displayauthors=9|vauthors=Chen J, Zheng H, Bei JX, Sun L, Jia WH, Li T, Zhang F, Seielstad M, Zeng YX, Zhang X, Liu J|date=December 2009|title=Genetic structure of the Han Chinese population revealed by genome-wide SNP variation|journal=American Journal of Human Genetics|volume=85|issue=6|pages=775–85|doi=10.1016/j.ajhg.2009.10.016|pmc=2790583|pmid=19944401}}
43. ^{{cite journal|vauthors=Gan RJ, Pan SL, Mustavich LF, Qin ZD, Cai XY, Qian J, Liu CW, Peng JH, Li SL, Xu JS, Jin L, Li H|year=2008|title=Pinghua population as an exception of Han Chinese's coherent genetic structure|journal=Journal of Human Genetics|volume=53|issue=4|pages=303–13|doi=10.1007/s10038-008-0250-x|pmid=18270655}}
44. ^{{cite journal | vauthors = Hurles ME, Sykes BC, Jobling MA, Forster P | title = The dual origin of the Malagasy in Island Southeast Asia and East Africa: evidence from maternal and paternal lineages | journal = American Journal of Human Genetics | volume = 76 | issue = 5 | pages = 894–901 | date = May 2005 | pmid = 15793703 | pmc = 1199379 | doi = 10.1086/430051 }}
45. ^{{cite journal | vauthors = Lu C, Zhang J, Li Y, Xia Y, Zhang F, Wu B, Wu W, Ji G, Gu A, Wang S, Jin L, Wang X | title = The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population | journal = Human Molecular Genetics | volume = 18 | issue = 6 | pages = 1122–30 | date = March 2009 | pmid = 19088127 | doi = 10.1093/hmg/ddn427 }}
46. ^{{cite journal | vauthors = Wen B, Li H, Lu D, Song X, Zhang F, He Y, Li F, Gao Y, Mao X, Zhang L, Qian J, Tan J, Jin J, Huang W, Deka R, Su B, Chakraborty R, Jin L | title = Genetic evidence supports demic diffusion of Han culture | journal = Nature | volume = 431 | issue = 7006 | pages = 302–5 | date = September 2004 | pmid = 15372031 | doi = 10.1038/nature02878 }}
47. ^{{cite journal | vauthors = Xue F, Wang Y, Xu S, Zhang F, Wen B, Wu X, Lu M, Deka R, Qian J, Jin L | title = A spatial analysis of genetic structure of human populations in China reveals distinct difference between maternal and paternal lineages | journal = European Journal of Human Genetics | volume = 16 | issue = 6 | pages = 705–17 | date = June 2008 | pmid = 18212820 | doi = 10.1038/sj.ejhg.5201998 | displayauthors = 9 }}
48. ^{{cite journal | vauthors = Wen B, Li H, Lu D, Song X, Zhang F, He Y, Li F, Gao Y, Mao X, Zhang L, Qian J, Tan J, Jin J, Huang W, Deka R, Su B, Chakraborty R, Jin L | title = Genetic evidence supports demic diffusion of Han culture | journal = Nature | volume = 431 | issue = 7006 | pages = 302–5 | date = September 2004 | pmid = 15372031 | doi = 10.1038/nature02878 | displayauthors = 9 }}
49. ^{{cite journal | vauthors = Li H, Wen B, Chen SJ, Su B, Pramoonjago P, Liu Y, Pan S, Qin Z, Liu W, Cheng X, Yang N, Li X, Tran D, Lu D, Hsu MT, Deka R, Marzuki S, Tan CC, Jin L | title = Paternal genetic affinity between Western Austronesians and Daic populations | journal = BMC Evolutionary Biology | volume = 8 | issue = 1 | pages = 146 | date = May 2008 | pmid = 18482451 | pmc = 2408594 | doi = 10.1186/1471-2148-8-146 }}
50. ^{{cite journal | vauthors = Karafet TM, Hallmark B, Cox MP, Sudoyo H, Downey S, Lansing JS, Hammer MF | title = Major east-west division underlies Y chromosome stratification across Indonesia | journal = Molecular Biology and Evolution | volume = 27 | issue = 8 | pages = 1833–44 | date = August 2010 | pmid = 20207712 | doi = 10.1093/molbev/msq063 }}
51. ^{{cite journal | vauthors = Edén CS, Hagberg L, Hanson LA, Korhonen T, Leffler H, Olling S | title = Adhesion of Escherichia coli in urinary tract infection | journal = Ciba Foundation Symposium | volume = 80 | pages = 161–87 | year = 1981 | pmid = 6114819 }}
52. ^{{cite web|last1=Wang|first1=Xiadong | name-list-format = vanc |title=Han Chinese dialect area by the distribution of the Y chromosome|url=http://blog.ifeng.com/article/31381043.html|website=Blog.ifeng.com|publisher=Wang Xiadong|access-date=10 June 2014|deadurl=yes|archive-url=https://web.archive.org/web/20140714221614/http://blog.ifeng.com/article/31381043.html|archive-date=14 July 2014}}
53. ^{{cite journal | vauthors = Yan S, Wang CC, Li H, Li SL, Jin L | title = An updated tree of Y-chromosome Haplogroup O and revised phylogenetic positions of mutations P164 and PK4 | journal = European Journal of Human Genetics | volume = 19 | issue = 9 | pages = 1013–5 | date = September 2011 | pmid = 21505448 | pmc = 3179364 | doi = 10.1038/ejhg.2011.64 }}
54. ^{{cite journal | vauthors = Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP | title = Phylogeographic differentiation of mitochondrial DNA in Han Chinese | journal = American Journal of Human Genetics | volume = 70 | issue = 3 | pages = 635–51 | date = March 2002 | pmid = 11836649 | pmc = 384943 | doi = 10.1086/338999 }}
55. ^{{cite journal | vauthors = Kivisild T, Tolk HV, Parik J, Wang Y, Papiha SS, Bandelt HJ, Villems R | title = The emerging limbs and twigs of the East Asian mtDNA tree | journal = Molecular Biology and Evolution | volume = 19 | issue = 10 | pages = 1737–51 | date = October 2002 | pmid = 12270900 | doi = 10.1093/oxfordjournals.molbev.a003996 }}
56. ^{{cite journal | vauthors = Yao YG, Kong QP, Man XY, Bandelt HJ, Zhang YP | title = Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA | journal = Molecular Biology and Evolution | volume = 20 | issue = 2 | pages = 214–9 | date = February 2003 | pmid = 12598688 | doi = 10.1093/molbev/msg026 }}
57. ^{{cite journal | vauthors = Kong QP, Sun C, Wang HW, Zhao M, Wang WZ, Zhong L, Hao XD, Pan H, Wang SY, Cheng YT, Zhu CL, Wu SF, Liu LN, Jin JQ, Yao YG, Zhang YP | title = Large-scale mtDNA screening reveals a surprising matrilineal complexity in east Asia and its implications to the peopling of the region | journal = Molecular Biology and Evolution | volume = 28 | issue = 1 | pages = 513–22 | date = January 2011 | pmid = 20713468 | doi = 10.1093/molbev/msq219 }}
58. ^{{cite journal | vauthors = Hammer MF, Horai S | title = Y chromosomal DNA variation and the peopling of Japan | journal = American Journal of Human Genetics | volume = 56 | issue = 4 | pages = 951–62 | date = April 1995 | pmid = 7717406 | pmc = 1801189 | doi = }}
59. ^{{cite journal | vauthors = Karafet TM, Zegura SL, Posukh O, Osipova L, Bergen A, Long J, Goldman D, Klitz W, Harihara S, de Knijff P, Wiebe V, Griffiths RC, Templeton AR, Hammer MF | display-authors = 6 | title = Ancestral Asian source(s) of new world Y-chromosome founder haplotypes | journal = American Journal of Human Genetics | volume = 64 | issue = 3 | pages = 817–31 | date = March 1999 | pmid = 10053017 | pmc = 1377800 | doi = 10.1086/302282 }}
60. ^{{cite journal | vauthors = Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonné-Tamir B, Bertranpetit J, Francalacci P, Ibrahim M, Jenkins T, Kidd JR, Mehdi SQ, Seielstad MT, Wells RS, Piazza A, Davis RW, Feldman MW, Cavalli-Sforza LL, Oefner PJ | display-authors = 6 | title = Y chromosome sequence variation and the history of human populations | journal = Nature Genetics | volume = 26 | issue = 3 | pages = 358–61 | date = November 2000 | pmid = 11062480 | doi = 10.1038/81685 }}
61. ^238/744 = 32.0% O2b-SRY465 in a pool of all Japanese samples of Xue et al. (2006), Katoh et al. (2004), Han-Jun Jin et al. (2009), Nonaka et al. (2007), and all non-Ainu and non-Okinawan Japanese samples of Hammer et al. (2006).
62. ^{{cite journal | vauthors = Jin HJ, Kwak KD, Hammer MF, Nakahori Y, Shinka T, Lee JW, Jin F, Jia X, Tyler-Smith C, Kim W | title = Y-chromosomal DNA haplogroups and their implications for the dual origins of the Koreans | journal = Human Genetics | volume = 114 | issue = 1 | pages = 27–35 | date = December 2003 | pmid = 14505036 | doi = 10.1007/s00439-003-1019-0 }}
63. ^{{cite journal | vauthors = Jin HJ, Tyler-Smith C, Kim W | title = The peopling of Korea revealed by analyses of mitochondrial DNA and Y-chromosomal markers | journal = PLOS One | volume = 4 | issue = 1 | pages = e4210 | year = 2009 | pmid = 19148289 | pmc = 2615218 | doi = 10.1371/journal.pone.0004210 }} {{open access}}
64. ^{{cite journal | vauthors = Katoh T, Munkhbat B, Tounai K, Mano S, Ando H, Oyungerel G, Chae GT, Han H, Jia GJ, Tokunaga K, Munkhtuvshin N, Tamiya G, Inoko H | display-authors = 6 | title = Genetic features of Mongolian ethnic groups revealed by Y-chromosomal analysis | journal = Gene | volume = 346 | pages = 63–70 | date = February 2005 | pmid = 15716011 | doi = 10.1016/j.gene.2004.10.023 }}
65. ^202/677 = 29.8% O2b-SRY465 in a pool of all ethnic Korean samples of Hammer et al. (2006), Xue et al. (2006), Katoh et al. (2004), Wook Kim et al. (2007), and Han-Jun Jin et al. (2009).
66. ^{{cite journal | vauthors = Kim W, Yoo TK, Kim SJ, Shin DJ, Tyler-Smith C, Jin HJ, Kwak KD, Kim ET, Bae YS | title = Lack of association between Y-chromosomal haplogroups and prostate cancer in the Korean population | journal = PLOS One | volume = 2 | issue = 1 | pages = e172 | date = January 2007 | pmid = 17245448 | pmc = 1766463 | doi = 10.1371/journal.pone.0000172 }} {{open access}}
67. ^{{cite journal | vauthors = Nonaka I, Minaguchi K, Takezaki N | title = Y-chromosomal binary haplogroups in the Japanese population and their relationship to 16 Y-STR polymorphisms | journal = Annals of Human Genetics | volume = 71 | issue = Pt 4 | pages = 480–95 | date = July 2007 | pmid = 17274803 | doi = 10.1111/j.1469-1809.2006.00343.x }}
68. ^The JPT sample is considered "as generally representative of the majority population in Japan". See {{cite web |last=Matsuda |first=Ichiro | name-list-format = vanc |title=Japanese in Tokyo, Japan – Population Description |location=Camden, NJ |publisher=Coriell Institute for Medical Research |url=https://catalog.coriell.org/0/Sections/Collections/NHGRI/Japanese.aspx?PgId=359 }}
69. ^{{cite journal | vauthors = Poznik GD, Xue Y, Mendez FL, Willems TF, Massaia A, Wilson Sayres MA, Ayub Q, McCarthy SA, Narechania A, Kashin S, Chen Y, Banerjee R, Rodriguez-Flores JL, Cerezo M, Shao H, Gymrek M, Malhotra A, Louzada S, Desalle R, Ritchie GR, Cerveira E, Fitzgerald TW, Garrison E, Marcketta A, Mittelman D, Romanovitch M, Zhang C, Zheng-Bradley X, Abecasis GR, McCarroll SA, Flicek P, Underhill PA, Coin L, Zerbino DR, Yang F, Lee C, Clarke L, Auton A, Erlich Y, Handsaker RE, Bustamante CD, Tyler-Smith C | display-authors = 6 | title = Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences | journal = Nature Genetics | volume = 48 | issue = 6 | pages = 593–9 | date = June 2016 | pmid = 27111036 | pmc = 4884158 | doi = 10.1038/ng.3559 | hdl = 11858/00-001M-0000-002A-F024-C }}
70. ^{{cite journal | vauthors = Ochiai E, Minaguchi K, Nambiar P, Kakimoto Y, Satoh F, Nakatome M, Miyashita K, Osawa M | title = Evaluation of Y chromosomal SNP haplogrouping in the HID-Ion AmpliSeq™ Identity Panel | journal = Legal Medicine | volume = 22 | issue = | pages = 58–61 | date = September 2016 | pmid = 27591541 | doi = 10.1016/j.legalmed.2016.08.001 }}
71. ^{{cite journal | vauthors = Tian C, Kosoy R, Lee A, Ransom M, Belmont JW, Gregersen PK, Seldin MF | title = Analysis of East Asia genetic substructure using genome-wide SNP arrays | journal = PLOS One | volume = 3 | issue = 12 | pages = e3862 | date = December 5, 2008 | pmid = 19057645 | pmc = 2587696 | doi = 10.1371/journal.pone.0003862 }}
72. ^10 11 {{cite journal | last1 = Matsumoto | first1 = Hideo | name-list-format = vanc | year = 2009 | title = The origin of the Japanese race based on genetic markers of immunoglobulin G. | journal = Proceedings of the Japan Academy Series B | volume = 85 | issue = 2| pages = 69, 71, 73 & 78 | doi = 10.2183/pjab/85.69 | doi-broken-date = 2019-03-15 }}
73. ^{{cite journal | vauthors = Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, Tabara Y, Yamamoto K, Yokota M, Liu X, Saw WY, Mamatyusupu D, Yang W, Xu S, Teo YY, Kato N | title = The fine-scale genetic structure and evolution of the Japanese population | journal = PLOS One | volume = 12 | issue = 11 | pages = e0185487 | year = 2017 | pmid = 29091727 | pmc = 5665431 | doi = 10.1371/journal.pone.0185487 }}
74. ^{{Cite news|url=https://mainichi.jp/english/articles/20180915/p2a/00m/0na/040000c|title=Researchers announce project to find origin of Japanese people from genome info|date=2018-09-15|work=Mainichi Daily News|access-date=2018-10-15}}
75. ^{{cite journal | vauthors = Jeong C, Nakagome S, Di Rienzo A | title = Deep History of East Asian Populations Revealed Through Genetic Analysis of the Ainu | journal = Genetics | volume = 202 | issue = 1 | pages = 261–72 | date = January 2016 | pmid = 26500257 | pmc = 4701090 | doi = 10.1534/genetics.115.178673 }}
76. ^{{cite journal | vauthors = Kim SH, Han MS, Kim W, Kim W | title = Y chromosome homogeneity in the Korean population | journal = International Journal of Legal Medicine | volume = 124 | issue = 6 | pages = 653–7 | date = November 2010 | pmid = 20714743 | doi = 10.1007/s00414-010-0501-1 }}
77. ^Reference Populations – Geno 2.0 Next Generation . (2017). The Genographic Project. Retrieved 15 May 2017, from [https://genographic.nationalgeographic.com/reference-populations-next-gen/ link.]
78. ^The History and Geography of Human Genes by Luigi Luca Cavalli-Sforza, Paolo Menozzi, Alberto Piazza [https://books.google.co.uk/books?id=FrwNcwKaUKoC&pg=PA225&lpg=PA225&dq=Cavalli-Sforza+Korean+mongol+AND.Chinese&source=bl&ots=HmcZWiKCd4&sig=Hn4a3B8v3_7xXcg11AMk_-yqLtk&hl=en&sa=X&ved=0ahUKEwjd0JaN08zUAhVkBsAKHfYwCUw4ChDoAQg_MAU#v=onepage&q=Cavalli-Sforza%20Korean%20mongol%20AND.Chinese&f=false]
79. ^Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. (1994). The History and Geography of Human Genes. New Jersey: Princeton University Press.
80. ^{{cite journal | vauthors = Jin HJ, Choi JW, Shin DJ, Kim JM, Kim W | year = 1999 | title = Distribution of length variation of the mtDNA 9‐bp motif in the intergenic COII/tRNALys region in East Asian populations | journal = Korean Journal of Biological Sciences | volume = 3 | issue = 4| pages = 393–397 | doi=10.1080/12265071.1999.9647513}}
81. ^{{cite journal | vauthors = Kim W, Shin DJ, Harihara S, Kim YJ | title = Y chromosomal DNA variation in east Asian populations and its potential for inferring the peopling of Korea | journal = Journal of Human Genetics | volume = 45 | issue = 2 | pages = 76–83 | date = 2000 | pmid = 10721667 | doi = 10.1007/s100380050015 }}
82. ^{{cite journal | vauthors = Kim JJ, Verdu P, Pakstis AJ, Speed WC, Kidd JR, Kidd KK | title = Use of autosomal loci for clustering individuals and populations of East Asian origin | journal = Human Genetics | volume = 117 | issue = 6 | pages = 511–9 | date = October 2005 | pmid = 16028061 | doi = 10.1007/s00439-005-1334-8 }}
83. ^{{cite journal | vauthors = Matsumoto H | title = The origin of the Japanese race based on genetic markers of immunoglobulin G | journal = Proceedings of the Japan Academy. Series B, Physical and Biological Sciences | volume = 85 | issue = 2 | pages = 69–82 | year = 2009 | pmid = 19212099 | pmc = 3524296 | doi = 10.2183/pjab/85.69 | doi-broken-date = 2019-03-15 }}
84. ^{{cite journal | vauthors = He M, Gitschier J, Zerjal T, de Knijff P, Tyler-Smith C, Xue Y | title = Geographical affinities of the HapMap samples | journal = PLOS One | volume = 4 | issue = 3 | pages = e4684 | year = 2009 | pmid = 19259268 | pmc = 2649532 | doi = 10.1371/journal.pone.0004684 }}
85. ^{{cite journal | vauthors = Jung J, Kang H, Cho YS, Oh JH, Ryu MH, Chung HW, Seo JS, Lee JE, Oh B, Bhak J, Kim HL | display-authors = 6 | title = Gene flow between the Korean peninsula and its neighboring countries | journal = PLOS One | volume = 5 | issue = 7 | pages = e11855 | date = July 2010 | pmid = 20686617 | pmc = 2912326 | doi = 10.1371/journal.pone.0011855 }}
86. ^{{cite web | title = Han Chinese in Beijing, China [CHB]. | date = 2018 | work = Coriell Institute for Medical Research | access-date = 27 February 2018 | url = https://www.coriell.org/1/NHGRI/Collections/HapMap-Collections/Han-Chinese-in-Beijing-China-CHB }}
87. ^{{cite journal | vauthors = Siska V, Jones ER, Jeon S, Bhak Y, Kim HM, Cho YS, Kim H, Lee K, Veselovskaya E, Balueva T, Gallego-Llorente M, Hofreiter M, Bradley DG, Eriksson A, Pinhasi R, Bhak J, Manica A | display-authors = 6 | title = Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago | journal = Science Advances | volume = 3 | issue = 2 | pages = e1601877 | date = February 2017 | pmid = 28164156 | pmc = 5287702 | doi = 10.1126/sciadv.1601877 }}
88. ^{{cite journal | vauthors = Balaresque P, Poulet N, Cussat-Blanc S, Gerard P, Quintana-Murci L, Heyer E, Jobling MA | title = Y-chromosome descent clusters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations | journal = European Journal of Human Genetics | volume = 23 | issue = 10 | pages = 1413–22 | date = October 2015 | pmid = 25585703 | pmc = 4430317 | doi = 10.1038/ejhg.2014.285 }}
89. ^{{cite journal | vauthors = Shi H, Dong YL, Wen B, Xiao CJ, Underhill PA, Shen PD, Chakraborty R, Jin L, Su B | title = Y-chromosome evidence of southern origin of the East Asian-specific haplogroup O3-M122 | journal = American Journal of Human Genetics | volume = 77 | issue = 3 | pages = 408–19 | date = September 2005 | pmid = 16080116 | pmc = 1226206 | doi = 10.1086/444436 }}
90. ^{{cite journal | vauthors = Xue Y, Zerjal T, Bao W, Zhu S, Shu Q, Xu J, Du R, Fu S, Li P, Hurles ME, Yang H, Tyler-Smith C | title = Male demography in East Asia: a north-south contrast in human population expansion times | journal = Genetics | volume = 172 | issue = 4 | pages = 2431–9 | date = April 2006 | pmid = 16489223 | pmc = 1456369 | doi = 10.1534/genetics.105.054270 }}
91. ^{{cite journal | vauthors = Shin DJ, Jin HJ, Kwak KD, Choi JW, Han MS, Kang PW, Choi SK, Kim W | title = Y-chromosome multiplexes and their potential for the DNA profiling of Koreans | journal = International Journal of Legal Medicine | volume = 115 | issue = 2 | pages = 109–17 | date = October 2001 | pmid = 11724428 | doi = 10.1007/s004140100248 }}
92. ^{{cite journal | vauthors = Park MJ, Lee HY, Kim NY, Lee EY, Yang WI, Shin KJ | title = Y-SNP miniplexes for East Asian Y-chromosomal haplogroup determination in degraded DNA | journal = Forensic Science International. Genetics | volume = 7 | issue = 1 | pages = 75–81 | date = January 2013 | pmid = 22818129 | doi = 10.1016/j.fsigen.2012.06.014 }}
93. ^{{cite journal | vauthors = Kim SH, Kim KC, Shin DJ, Jin HJ, Kwak KD, Han MS, Song JM, Kim W, Kim W | title = High frequencies of Y-chromosome haplogroup O2b-SRY465 lineages in Korea: a genetic perspective on the peopling of Korea | journal = Investigative Genetics | volume = 2 | issue = 1 | pages = 10 | date = April 2011 | pmid = 21463511 | pmc = 3087676 | doi = 10.1186/2041-2223-2-10 }}
94. ^{{cite journal | vauthors = Kwon SY, Lee HY, Lee EY, Yang WI, Shin KJ | title = Confirmation of Y haplogroup tree topologies with newly suggested Y-SNPs for the C2, O2b and O3a subhaplogroups | journal = Forensic Science International. Genetics | volume = 19 | issue = | pages = 42–46 | date = November 2015 | pmid = 26103100 | doi = 10.1016/j.fsigen.2015.06.003 }}
95. ^{{cite journal | vauthors = Wells RS, Yuldasheva N, Ruzibakiev R, Underhill PA, Evseeva I, Blue-Smith J, Jin L, Su B, Pitchappan R, Shanmugalakshmi S, Balakrishnan K, Read M, Pearson NM, Zerjal T, Webster MT, Zholoshvili I, Jamarjashvili E, Gambarov S, Nikbin B, Dostiev A, Aknazarov O, Zalloua P, Tsoy I, Kitaev M, Mirrakhimov M, Chariev A, Bodmer WF | display-authors = 6 | title = The Eurasian heartland: a continental perspective on Y-chromosome diversity | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 18 | pages = 10244–9 | date = August 2001 | pmid = 11526236 | pmc = 56946 | doi = 10.1073/pnas.171305098 }}
96. ^{{cite journal | vauthors = Tajima A, Hayami M, Tokunaga K, Juji T, Matsuo M, Marzuki S, Omoto K, Horai S | title = Genetic origins of the Ainu inferred from combined DNA analyses of maternal and paternal lineages | journal = Journal of Human Genetics | volume = 49 | issue = 4 | pages = 187–93 | year = 2004 | pmid = 14997363 | doi = 10.1007/s10038-004-0131-x }}
97. ^Eugene Y. Park. (n.d.). Penn Arts & Sciences East Asian Languages and Civilizations. Retrieved January 24, 2018, from [https://www.sas.upenn.edu/ealc/people/eugene-y-park link.] {{Webarchive|url=https://web.archive.org/web/20171111194602/https://www.sas.upenn.edu/ealc/people/eugene-y-park |date=11 November 2017 }}
98. ^In a YouTube video which was published on May 18, 2015, [https://www.youtube.com/watch?v=akiv2ji6EiY&t=9m9s from the 9:09 mark of the video to 9:56 mark of the video], Korea Foundation Associate Professor of History, Eugene Y. Park said, "Unlike the Jewish people, Jewish males with the traditionally priestly surnames such as the Levi, Levine, Cohen, and others, who claim that they're descended from Moses's brother, Aaron, and the Y-DNA analysis actually shows that the majority of the Jewish men with the, such surnames, descend from a single male, who lived about a hundred generations ago, around the time of the Exodus. In complete, in stark contrast, Y-DNA analysis shows that there's no correlation between Y-DNA haplotype or haplogroup, and a Korean person's surname or ancestral seat. It's fairly random."
99. ^{{cite journal | vauthors = Kong QP, Yao YG, Liu M, Shen SP, Chen C, Zhu CL, Palanichamy MG, Zhang YP | title = Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China | journal = Human Genetics | volume = 113 | issue = 5 | pages = 391–405 | date = October 2003 | pmid = 12938036 | doi = 10.1007/s00439-003-1004-7 }}
100. ^{{cite journal | vauthors = Derenko M, Malyarchuk B, Grzybowski T, Denisova G, Dambueva I, Perkova M, Dorzhu C, Luzina F, Lee HK, Vanecek T, Villems R, Zakharov I | display-authors = 6 | title = Phylogeographic analysis of mitochondrial DNA in northern Asian populations | journal = American Journal of Human Genetics | volume = 81 | issue = 5 | pages = 1025–41 | date = November 2007 | pmid = 17924343 | pmc = 2265662 | doi = 10.1086/522933 }}
101. ^{{cite journal | vauthors =Hong SB, Kim KC, Kim W | year = 2014 | title = Mitochondrial DNA haplogroups and homogeneity in the Korean population | journal = Genes & Genomics | volume = 36| issue = 5| pages = 583–590| doi = 10.1007/s13258-014-0194-9 }}
102. ^{{Cite web|url=http://china.org.cn/english/2001/Aug/16896.htm|title=DNA Match Solves Ancient Mystery|website=china.org.cn|access-date=2018-12-25}}
103. ^{{Cite web|url=http://www.khazaria.com/genetics/mongols.html|title=Mongol Genetics – DNA of Mongolia's Khalkha Mongolians and others|website=www.khazaria.com|access-date=2018-12-25}}
104. ^{{cite journal | vauthors = Kolman CJ, Sambuughin N, Bermingham E | title = Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders | journal = Genetics | volume = 142 | issue = 4 | pages = 1321–34 | date = April 1996 | pmid = 8846908 | pmc = 1207128 }}
105. ^{{cite journal | vauthors = Keyser-Tracqui C, Crubézy E, Pamzsav H, Varga T, Ludes B | title = Population origins in Mongolia: genetic structure analysis of ancient and modern DNA | journal = American Journal of Physical Anthropology | volume = 131 | issue = 2 | pages = 272–81 | date = October 2006 | pmid = 16596591 | doi = 10.1002/ajpa.20429 }}
106. ^{{cite journal | vauthors = Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S | display-authors = 6 | title = Ancestral Origins and Genetic History of Tibetan Highlanders | journal = American Journal of Human Genetics | volume = 99 | issue = 3 | pages = 580–594 | date = September 2016 | pmid = 27569548 | pmc = 5011065 | doi = 10.1016/j.ajhg.2016.07.002 }}
107. ^{{cite journal | vauthors = Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J | display-authors = 6 | title = Sequencing of 50 human exomes reveals adaptation to high altitude | journal = Science | volume = 329 | issue = 5987 | pages = 75–8 | date = July 2010 | pmid = 20595611 | pmc = 3711608 | doi = 10.1126/science.1190371 | df = dmy-all | bibcode = 2010Sci...329...75Y }}
108. ^{{cite journal | vauthors = Aldenderfer M, Yinong Z |title= The Prehistory of the Tibetan Plateau to the Seventh Century A.D.: Perspectives and Research from China and the West Since 1950|doi=10.1023/B:JOWO.0000038657.79035.9e |volume=18 |issue= 1|journal=Journal of World Prehistory |pages=1–55|date= March 2004 }}
109. ^{{cite journal | vauthors = Yuan B, Huang W, Zhang D |title= New evidence for human occupation of the northern Tibetan Plateau, China during the Late Pleistocene |doi=10.1007/s11434-007-0357-z |volume=52 |issue= 19 |journal=Chinese Science Bulletin |pages=2675–2679 |date= October 2007 |bibcode= 2007ChSBu..52.2675Y }}
110. ^{{cite journal | vauthors = Zhao M, Kong QP, Wang HW, Peng MS, Xie XD, Wang WZ, Duan JG, Cai MC, Zhao SN, Tu YQ, Wu SF, Yao YG, Bandelt HJ, Zhang YP | display-authors = 6 | title = Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | issue = 50 | pages = 21230–5 | date = December 2009 | pmid = 19955425 | pmc = 2795552 | doi = 10.1073/pnas.0907844106 | df = dmy-all | bibcode = 2009PNAS..10621230Z }}
111. ^Su, Bing, et al. (2000)
112. ^{{cite journal | vauthors = Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, Akhmetova V, Balanovska E, Balanovsky O, Turdikulova S, Dalimova D, Nymadawa P, Bahmanimehr A, Sahakyan H, Tambets K, Fedorova S, Barashkov N, Khidiyatova I, Mihailov E, Khusainova R, Damba L, Derenko M, Malyarchuk B, Osipova L, Voevoda M, Yepiskoposyan L, Kivisild T, Khusnutdinova E, Villems R | display-authors = 6 | title = The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia | journal = PLoS Genetics | volume = 11 | issue = 4 | pages = e1005068 | date = April 2015 | pmid = 25898006 | pmc = 4405460 | doi = 10.1371/journal.pgen.1005068 }}
113. ^{{cite journal |last1=Robbeets |first1=Martine | name-list-format = vanc |title=Austronesian influence and Transeurasian ancestry in Japanese |journal=Language Dynamics and Change |date=1 January 2017 |volume=7 |issue=2 |pages=210–251 |doi=10.1163/22105832-00702005 }}
114. ^{{Cite web|url=https://web.archive.org/web/20150715184347/http://www.xjass.com/ls/content/2010-06/11/content_150662.htm|title=丁零—铁勒的西迁及其所建西域政权 - 新疆哲学社会科学|date=2015-07-15|website=web.archive.org|access-date=2019-03-09}}
115. ^{{Cite web|url=https://www.historyfiles.co.uk/FeaturesFarEast/TurkicIntro.htm|title=An Introduction to the Turkic Tribes|website=www.historyfiles.co.uk|access-date=2019-03-09}}
116. ^{{cite journal | vauthors = Zerjal T, Wells RS, Yuldasheva N, Ruzibakiev R, Tyler-Smith C | title = A genetic landscape reshaped by recent events: Y-chromosomal insights into central Asia | language = English | journal = American Journal of Human Genetics | volume = 71 | issue = 3 | pages = 466–82 | date = September 2002 | pmid = 12145751 | pmc = 419996 | doi = 10.1086/342096 }}
117. ^{{Cite journal|date=2005|title=Полиморфизм митохондриальной ДНК в казахской популяции|url=https://elibrary.ru/item.asp?id=9184531|journal=Медицинская Генетика|volume=4|issue=3|pages=108–113|issn=2073-7998}}
118. ^{{cite journal | vauthors = Alkan C, Kavak P, Somel M, Gokcumen O, Ugurlu S, Saygi C, Dal E, Bugra K, Güngör T, Sahinalp SC, Özören N, Bekpen C | title = Whole genome sequencing of Turkish genomes reveals functional private alleles and impact of genetic interactions with Europe, Asia and Africa | journal = BMC Genomics | volume = 15 | issue = 1 | pages = 963 | date = November 2014 | pmid = 25376095 | pmc = 4236450 | doi = 10.1186/1471-2164-15-963 }}
{{Human genetics}}

1 : East Asian people

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/27 12:31:09