请输入您要查询的百科知识:

 

词条 George Samuel Hurst
释义

  1. Life and times

  2. Education

  3. Oak Ridge National Laboratory

     Neutrons, dosimetry and phantoms  Alpha survey meter  Gas ionization studies  Nevada Test Site  VUV, vacuum ultraviolet radiation and Jesse effect  Time-of-flight investigations  Electron swarm measurement 

  4. Hiroshima and Nagasaki

  5. Radiation accident expert

  6. NASA dosimetry projects

  7. Microdosimetry

  8. One-atom detection, single atom detection

  9. Solar neutrinos

  10. Magnetic monopole detectors

  11. Resonance ionization spectroscopy, RIS

  12. Sputter-initiated resonance ionization spectroscopy, SIRIS

  13. Awards and honors

  14. Professional affiliations

  15. Dissertation work

  16. Patents (15 total)

  17. Private enterprise

  18. References

{{Infobox scientist
| name = George Samuel Hurst
| native_name =
| native_name_lang =
| image =
| imagesize =
| alt =
| caption = George Samuel Hurst
Health physicist and Inventor
| birth_date = {{birth date |1927|10|13}}
| birth_place = Ponza, Bell County, Kentucky
| death_date = {{death date and age |2010|07|04 |1927|10|13}}
| death_place = Knoxville, Tennessee
| death_cause = Brain aneurism
| resting_place = Oak Ridge Memorial Park
| resting_place_coordinates =
| other_names =
| residence =
| citizenship =
| nationality =
| fields = Health physics
| workplaces = Oak Ridge National Laboratory
University of Kentucky
Florida State University
Elographics
Atom Sciences
Pellissippi International
Consultec Scientific
TopoTec
| patrons =
| alma_mater = Bell County High School
Pineville, Kentucky
Berea College
University of Kentucky
University of Tennessee
| thesis_title = Attachment of low-energy electrons in mixtures containing oxygen, 1959.[1]
Negative ions of oxygen, 1959.[2]
| thesis_url =
| thesis_year = 1959
| doctoral_advisor =
| academic_advisors =
| doctoral_students =
| notable_students =
| known_for = Touchscreen invention
Hurst Fast Neutron Counter
Resonance Ionization Spectroscopy
| influences =
| influenced =
| awards = IR-100 Award
| author_abbrev_bot =
| author_abbrev_zoo =
| spouse = Betty Partin Hurst
| partner =
| children = Donald E. Hurst, son
Karen Popham, daughter
| signature =
| signature_alt =
| website =
| footnotes =
}}

George Samuel Hurst (13 October 1927 – 4 July 2010) was a health physicist, scientist, inventor, educator and innovator. He developed the omnipresent touchscreen technology and single atom theory. Hurst spent his career at Oak Ridge National Laboratory where he was involved with: neutron survey meters; alpha survey meters; ionizing radiation dosimetry; gas ionization studies; Nevada Test Site gamma and neutron radiation measurements; vacuum ultraviolet (VUV) radiation and the Jesse effect; time-of-flight investigations; electron swarm measurements; study of atomic bomb survivors from Hiroshima and Nagasaki; radiation accident investigations; radiation dosimetry projects for NASA; microdosimetry; one-atom detection and single atom detection; solar neutrino experiments; magnetic monopole detectors; resonance ionization spectroscopy (RIS); and, sputter-initiated resonance ionization spectroscopy (SIRIS).

Life and times

Hurst was born on 13 October 1927 in the rural town of Ponza, Bell County, Kentucky located near Pineville, Kentucky. His father was James H. Hurst and mother was Myrtle Wright Hurst.[1] As a boy, he had a keen interest in Thomas Edison. Hurst grew up on the family farm and came from a large family with two brothers and two sisters. In 2010, he died of a brain aneurism and was buried at Oak Ridge Memorial Park.[2]

Education

Hurst attended high school at Bell County High School in Pineville, Kentucky. At the age of 15, he enrolled in Berea College. In 1947, Hurst received a B.A. degree in physics and a minor in mathematics from Berea College.[3] He attended the University of Kentucky and graduated in 1948 with the M.S. degree in physics. During registration at UK, he met Rufus Ritchie. Ritchie became a longtime friend and the two worked on several projects together. After graduation, they both went to ORNL.

In 1959, Hurst was awarded a Ph.D. in physics from the University of Tennessee.[4][5]

Oak Ridge National Laboratory

In 1948, Hurst was recruited by Karl Z. Morgan and landed a research position at Oak Ridge National Laboratory (ORNL) in the Health Physics Division. His starting salary was $325 per month. He made significant contributions in the development of radiation detectors and instrumentation, neutron dosimetry and spectroscopy, and field sample analysis. While working at Oak Ridge, he earned a PhD in physics from the University of Tennessee in 1959. In 1966, Hurst accepted a position at the University of Kentucky as Professor of Physics.[6][7][8]

Neutrons, dosimetry and phantoms

From 1948 to 1950, Hurst worked with Ritchie to develop a fast neutron survey meter and fast neutron dosimetry.[9][10][11][12] The fast neutron dosimetry work continued throughout the 1950s with the added interest in tissue dose.[13][14][15] In 1952, the team of Hurst, D.J. Knowles and C. Yochem worked to develop a thermal neutron survey instrument.[16] Hurst and F.M. Glass developed a method of pulse integration by utilizing the binary scaling unit.[17] Hurst explored fast neutron dosimetry and tissue-equivalent phantoms.[18][19] His team that included J.A. Harter, P.N. Hensley and W.A. Mills studied neutron flux and tissue dose with fission threshold detectors.[20]

Around 1955, Hurst teamed with A.C. Upton, F.P. Conte and W.A. Mills to look at the relative biological effectiveness (RBE) that involved mixed radiation fields for acute lethality in various animal models.[21][22]

Additional studies with A.C. Upton, K.W. Christenberry, G.S. Melville, and J. Furth utilized mixed radiation fields to produce lens opacity in various animal models.[23] In 1956 and again in 1980, Hurst utilized threshold detectors to measure neutron spectra in order to determine tissue dose.[24][25]

In 1961, Hurst led a group that performed measurements of the absorbed dose of neutrons, and of mixed radiation field of neutrons and gamma rays. This resulted in the publication of Handbook 75 for the National Bureau of Standards.[26]

Alpha survey meter

In 1950, Hurst and his team developed a portable alpha survey meter.[27]

Gas ionization studies

In 1953, an interest in the ion pair energy production from 5 MeV alpha particles led to nearly 2 decades of research, during which time Hurst studied alpha particle ionizations and excitations in various gases and gas mixtures.[28][29][30][31]

Nevada Test Site

Hurst and the team of L.J. Deal and H.H. Rossi performed gamma and neutron radiation measurements at the Nevada Test Site during Operation Upshot–Knothole for the Atomic Energy Commission.[32] For Operation PLUMBBOB, Hurst was again asked to participate along with Ritchie at the Nevada Test Site to collect radiation dosimetry data for human exposures during the tests.[33]

VUV, vacuum ultraviolet radiation and Jesse effect

The Jesse effect, named after William P. Jesse, may best be described as the increase in ionization produced in a gas by alpha, beta, or gamma ionizing radiations when a small concentration of a gas with a lower ionization potential is present.[34][35][36] Hurst utilized noble gases to examine vacuum ultraviolet radiation (VUV) and the Jesse effect. For these efforts, Hurst sought the assistance of Thurmond E. Stewart, James E. Parks, H. Lee Weidner, M. Payne and C. Klots.[37][38][39][40] Hurst performed additional VUV studies separately on Helium, Argon, and Krypton.[41][42][43]

Time-of-flight investigations

In the 1960s, Hurst along with L.B. O'Kelly, E.B. Wagner, J.A. Stockdale, James E. Parks, and F.J. Davis investigated time-of-flight electron transport in gases. The group utilized ethylene, water vapor and hydrogen to study and determine time-of-flight electron diffusion coefficients and electron drift velocities for these gases. Hurst led efforts to investigate time-of-flight of electron transport in atomic and molecular gases.[44][45][46]

Electron swarm measurement

In the mid 1960s, Hurst pursued researches that involved electron swarm measurement, swarm‐beam techniques and swarm drift to determine electron capture cross sections in heavy water, chlorobenzene, bromobenzene, ethylene and ethylene mixtures.[47][48][49][50][51]

Hiroshima and Nagasaki

In the 1950s, Hurst went to Japan with colleagues and students Rufus Ritchie, Nello Pace, and Robert E. Smith to conduct studies for the Atomic Bomb Casualty Commission. The team studied the delayed and latent effects with an emphasis on the mortality and morbidity rates among the atomic bomb survivors of Hiroshima and Nagasaki.[52][53][54]

Radiation accident expert

The expertise and experience of Hurst were often called upon for matters that involved radiation accidents.

The IAEA asked for and received assistance from Hurst to investigate the Vinča reactor criticality accident that occurred on 15 October 1958 at Vinča, Yugoslavia.[55][56][57][58][59]

NASA dosimetry projects

In 1965, Hurst prepared a special publication for NASA for radiation dosimetry applications to be utilized for data collection that involved radiation in space.[60] Then in 1986, a technical report was prepared for NASA that looked at the feasibility of a solar neutrino experiment.[61]

Microdosimetry

  • Atomic physics: microdosimetry, 1974.[62]
  • Digital Characterisation of Particle Tracks for Microdosimetry, 1985.[63]
  • A digital approach to neutron dosimetry and microdosimetry, 1985.[64]

One-atom detection, single atom detection

  • Selective Single Atom Detection in a 1019 Atom Background, 1977.[65]
  • A demonstration of one‐atom detection, 1977.[66]
  • One-atom detection using resonance ionization spectroscopy, 1977.[67]
  • Detection of single atoms in particle tracks, 1978.[68]
  • Selective, laser one-atom detection of neutral prompt fission fragments, 1978.[69]
  • One-atom detection in individual ionization tracks, 1978.[70]
  • A Generalization of One-Atom Detection, 1979.[71]
  • Resonance ionization spectroscopy and one-atom detection, 1979.[72]
  • One-atom detection, 1980.[73]
  • Fluctuation experiments on atomic and molecular systems using the one-atom detector, 1982.[74]
  • One-atom detection and statistical studies with resonance ionization spectroscopy, 1985.[75]

Solar neutrinos

In the 1980s, Hurst was called upon by NASA to further explore solar neutrinos.

  • Radiochemical solar neutrino experiment using 81Br (nu, e) 81Kr, 1983.[76]
  • A Radiochemical solar neutrino experiment using 81Br (ν, e) 81Kr, 1983.[77]
  • Feasibility of a Br-81 (ν, e−) Kr-81 Solar Neutrino Experiment, 1984.[78]
  • A proposed solar neutrino experiment using 81Br (ν, e−) 81Kr, 1985.[79]
  • Feasibility of 81Br (v, e−) 81Kr Solar Neutrino Experiment, 1985.[80]
  • Feasibility of a 81Br (nu, e-) 81Kr solar neutrino experiment, 1986.[81]

Magnetic monopole detectors

  • Magnetic monopole detectors based on He (2 3 S), 1985.[82]

Resonance ionization spectroscopy, RIS

{{Col-begin}}{{Col-1-of-2}}
  • Saturated Two-Photon Resonance Ionization of He (2 S 1), 1975.[83]
  • Kinetics of He (2 S 1) Using Resonance Ionization Spectroscopy, 1975.[84]
  • Resonance ionization for analytical spectroscopy, 1976.[85]
  • Observation of New Satellites in the Cs-Ar System Using Resonance Ionization Spectroscopy, 1978.[86]
  • Resonance ionization spectroscopy and one-atom detection, 1979.[87]
  • Resonance ionization spectroscopy, 1979.[88]
  • Resonance ionization spectroscopy with amplification, 1979.[89]
  • Resonance ionization spectroscopy of lithium, 1979.[90]
  • A summary and review of the early history of RIS, 1979.[91]
  • Direct counting of Xe atoms (with RIS), 1980.[92]
  • Resonance ionization source for mass spectroscopy, 1980.[93]
  • Resonance ionization detection of Xe atoms, 1980.[94]
  • Detection of trace amounts of transuranics by resonance ionization spectroscopy of noble gases, 1980.[95]
  • Resonance ionization spectroscopy, 1981.[96]
  • Resonance Ionization Spectroscopy: Counting Noble Gas Atoms, 1981.[97]
  • Resonance ionization spectroscopy schemes for Ar, Kr and Xe, 1981.[98]
  • Applications of resonance ionization spectroscopy in atomic and molecular physics, 1981.[99]
  • Resonance ionization spectroscopy for low-level counting, 1982.[100]
{{Col-2-of-2}}
  • Applications of resonance ionization spectroscopy in neutron dosimetry, 1982.[101]
  • Noble Gas Detection Using Resonance Ionization Spectroscopy and a Quadrupole Mass Spectrometer, 1983.[102]
  • Tunable VUV light generation for the low-level resonant ionization detection of krypton, 1983.[43]
  • Selective counting of krypton atoms using resonance ionization spectroscopy, 1984.[103]
  • Resonance ionization Spectroscopy: inert atom detection, 1984.[104]
  • Application of resonance ionization spectroscopy in particle physics, 1984.[105]
  • Experiments on statistical mechanics using resonance ionization spectroscopy, 1984.[106]
  • Searches for fractional charges and superheavy atoms, 1984.[107]
  • Theory of resonance ionization spectroscopy, 1985.[108]
  • One-atom detection and statistical studies with resonance ionization spectroscopy, 1985.[75]
  • Analysis of 81Kr in groundwater using laser resonance ionization spectroscopy, 1985.[109]
  • Weak interaction studies using resonance ionization spectroscopy, 1985.[110]
  • Resonance ionization spectroscopy, 1986.[111]
  • Trends in resonance ionization spectroscopy, 1986.[112]
  • Analysis of 81Kr in groundwater using laser resonance ionization spectroscopy, 1986.[113]
  • Detection of Single Atoms by Resonance Ionization Spectroscopy [and Discussion], 1987.[114]
  • Elemental analysis using resonance ionization spectroscopy, 1988.[115]
{{Col-end}}

Sputter-initiated resonance ionization spectroscopy, SIRIS

  • Sputter-initiated resonance ionization spectroscopy, 1983.[116]
  • Ultrasensitive elemental analysis of solids by sputter initiated resonance ionization Spectroscopy, 1983.[117]
  • Sputter initiated RIS (SIRIS) for analysis of semiconductor impurities, 1984.[118]
  • A search for new elementary particles using sputter-initiated resonance ionization spectroscopy, 1986.[119]

Awards and honors

  • IR-100 Award, 3 awards
  • Union Carbide, Corporate fellow
  • American Physical Society, fellow
  • University of Kentucky, Alumni Association Hall of Distinguished Alumni, member
  • Berea College, D.Sc., honorary degree
  • University of Tennessee, Physics Department, Distinguished Alumni Award, 2005
  • University of Tennessee, Physics Department, G. Samuel and Betty P. Hurst Scholarship Fund; support for physics majors
  • Bell County High School, Pineville, Kentucky, notable alumni

Professional affiliations

  • Florida State University, visiting professor
  • Health Physics Society
  • Scientists and Engineers for Appalachia (SEA), founder
  • University of Tennessee, Institute of Resonance Ionization Spectroscopy, founder, director 1985–1988

Dissertation work

  • Attachment of low-energy electrons in mixtures containing oxygen, 1959.[4]
  • Negative ions of oxygen, 1959.[5]

Patents (15 total)

  • Resonance ionization for analytical spectroscopy, 1976.[120]
  • Method and apparatus for noble gas atom detection with isotopic selectivity, 1984.[121]
  • Method of analyzing for a component in a sample, 1984.[122]
  • Method and apparatus for sensitive atom counting with high isotopic selectivity, 1987.[123]
  • Double pulsed time-of-flight mass spectrometer, 1987.[124]
  • Sensitive, stable, effective at low doses and low energy, 1987.[125]
  • Ionizing radiation detector system, 1990.[126]
  • HVAC system. Radon monitor and control system based upon alpha particle detection, 1991.[127]
  • System for determining health risk due to radon progeny and uses thereof, 1993.[128]
  • Instrument simulator system, 1994.[129]
  • Instrument simulator system, 1995.[130]
  • Touch screen based topological mapping with resistance framing design, 2003.[131]
  • Touch sensor with non-uniform resistive band, 2007.[132]
  • Touch screen with relatively conductive grid, 2010.[133]
  • Multiple-touch sensor, 2011[134]

Private enterprise

Hurst has founded or co-founded five businesses:

  • Elographics, 1971. Developed touchscreen technology. Several patents secured. Electrical Sensor of Plane Coordinates.[131][132][133][134][135]
  • Atom Sciences
  • Pellissippi International, 1988.[136]
  • Consultec Scientific, 1990.[137]

References

1. ^Kentucky, Vital Record Indexes, 1911–1999. Database, FamilySearch. George S Hurst, 13 October 1927. Citing Birth, Bell, Kentucky, United States. Kentucky Department for Libraries and Archives. Frankfort, KY.
2. ^Editor. (6 July 2010). George Samuel Hurst. Oakridger. Oak Ridge, TN.
3. ^Ellis, Normandi. (Spring 2007). Sam Hurst touches on a Few Great Ideas. Berea College Magazine. Berea College. Berea, KY. 77(4): 22-27.
4. ^Hurst, G. S., & Bortner, T. E. (1959). Attachment of low-energy electrons in mixtures containing oxygen. Physical Review. 114(1): 116.
5. ^Hurst, G. S., & Bortner, T. E. (1959). Negative ions of oxygen. Radiation Research Supplement. 1: 547-557.
6. ^Auxier, John A. (July 2010). In Memoriam: George Samuel Hurst, 1927–2010. Health Physics Society.
7. ^Compton, Robert N., & Parks, James E. (2011). George Samuel Hurst. Physics Today. 64(2): 60.
8. ^Longmire, Catherine. (Spring/Summer 2009). For Sam Hurst, Persistence Pays Off. Alumnus Profile. Cross Sections. UT Knoxville Department of Physics & Astronomy. Knoxville, TN.
9. ^Hurst, G. S. (1949). Portable Fast Neutron Survey Meter (No. AECU-613 (ORNL-485)).
10. ^Hurst, G. (January 1950). MEASUREMENT OF FAST NEUTRON DOSAGE TO TISSUE WITH A PROPORTIONAL COUNTER. Physical Review. 78(5): 640-640.
11. ^Hurst, G., & Ritchie, R. H. (January 1950). A FLAT RESPONSE PROPORTIONAL COUNTER FOR FAST NEUTRONS. Physical Review. 79(2): 415-416.
12. ^Hurst, G. S. (1950). Fast Neutron Count-rate Dosimetry (No. ORNL-589).
13. ^Hurst, G. S., Ritchie, R. H., & Wilson, H. N. (1951). A Count‐Rate Method of Measuring Fast Neutron Tissue Dose. Review of Scientific Instruments. 22(12): 981-986.
14. ^Hurst, G. S., & Ritchie, R. H. (1953). Fast Neutron Dosimetry. Radiology. 60(6): 864-869.
15. ^Hurst, G. S. (1954). An absolute tissue dosemeter for fast neutrons. The British Journal of Radiology. 27(318): 353-357.
16. ^Hurst, G. S., Knowles, D. J., & Yochem, C. (1952). A thermal neutron survey instrument (No. ORNL-1134). Oak Ridge National Lab.
17. ^Glass, F. M., & Hurst, G. S. (1952). A method of pulse integration using the binary scaling unit. Review of Scientific Instruments. 23(2): 67-72.
18. ^Barr, T. A., & Hurst, G. S. (1954). Fast-neutron dose in a large tissue-equivalent phantom. Nucleonics (US) Ceased publication, 12.
19. ^Mills, W. A., & Hurst, G. S. (1954). Fast-neutron dosimetry in a small tissue-equivalent phantom. Nucleonics (US) Ceased publication, 12.
20. ^Hurst, G. S., Harter, J. A., Hensley, P. N., & Mills, W. A. (1954). Neutron Flux and Tissue Dose Studies with Fission Threshold Detectors. Part I. Experimental Measurements. (No. ORNL-1671). Oak Ridge National Lab, Tennessee.
21. ^Upton, A. C., Conte, F. P., Hurst, G. S., & Mills, W. A. (January 1955). The Relative Biological Effectiveness of Fast Neutrons, X-rays, and Gamma-Rays for Acute Lethality in Mice. Radiation Research. 3(3): 355.
22. ^Upton, A. C., Conte, F. P., Hurst, G. S., & Mills, W. A. (1956). The relative biological effectiveness of fast neutrons, X-rays, and γ-rays for acute lethality in mice. Radiation Research. 4(2): 117-131.
23. ^Upton, A. C., Christenberry, K. W., Melville, G. S., Furth, J., & Hurst, G. S. (1956). The Relative Biological Effectiveness of Neutrons, X-Rays, and Gamma Rays for the Production of Lens Opacities: Observations on Mice, Rats, Guinea-Pigs, and Rabbits. Radiology. 67(5): 686-696.
24. ^Hurst, G. S., Harter, J. A., Hensley, P. N., Mills, W. A., Slater, M., & Reinhardt, P. W. (1956). Techniques of measuring neutron spectra with threshold detectors—tissue dose determination. Review of Scientific Instruments. 27(3): 153-156.
25. ^Hurst, G. S., Harter, J. A., Hensley, P. N., Mills, W. A., Slater, M., & Reinhard, P. W. (1980). Techniques of Measuring Neutron Spectra with Threshold Detectors-Tissue Dose Determination. Health Physics. 38(6): 1080-1085.
26. ^Hurst, G. S., Caswell, R. S., Maienschein, F. C., Rossi, H. H., Sayeg, J. A., Schuler, R. H., & Wallace, R. W. (1961). Measurement of Absorbed Dose of Neutrons, and of Mixtures of Neutrons and Gamma Rays (No. NBS-HB-75). National Bureau of Standards. Gaithersburg, MD.
27. ^Hurst, W. M., Hurst, G. S., & McDonald, W. B. (1950). A Portable Alpha Survey Meter (No. ORNL-602).
28. ^Bortner, T. E., & Hurst, G. S. (1953). Energy per ion pair for 5-Mev alpha-particles in helium. Physical Review. 90(1): 160.
29. ^Bortner, T. E., & Hurst, G. S. (1954). Ionization of pure gases and mixtures of gases by 5-MeV alpha particles. Physical Review. 93(6): 1236.
30. ^Moe, H. J., Bortner, T. E., & Hurst, G. S. (1957). Ionization of Acetylene Mixtures and Other Mixtures by Pu239 Alpha Particles. The Journal of Physical Chemistry. 61(4): 422-425.
31. ^Hurst, G. S., Bortner, T. E., & Glick, R. E. (1965). Ionization and excitation of argon with alpha particles. The Journal of Chemical Physics. 42(2): 713-719.
32. ^Deal, L. J., Rossi, H. H., & Hurst, G. S. (1953). Operation Upshot–Knothole, Nevada Proving Grounds. Project 24. 2. Physical measurements of gamma and neutron radiation in shelter and instrumentation evaluation. Report for March–June 1953 (No. AD-A-995225/0; AEC-WT-789). USAEC, Washington, DC.
33. ^Hurst, G. S., & Ritchie, R. H. (1958). Operation PLUMBBOB. Nevada Test Site. May–October 1957, Project 395. Radiation Dosimetry for Human Exposures. Oak Ridge National Lab., Tennessee.
34. ^Jesse, W. P. (1970). Isotope Effect as a Function of Alpha‐Particle Energy in the Ionization of Hydrocarbon Gases. The Journal of Chemical Physics. 52(3): 1314-1316.
35. ^Jesse, W. P. (1971). Ionization Measurements in Mercury Vapor with Beta Particles and the Mean Energy to Form an Ion Pair. The Journal of Chemical Physics. 55(7): 3603-3604.
36. ^Person, J. C. (1974). Photoionization and the Jesse effect: A comparison of yields and isotope effects. Radiation Research. 59(2): 408-421.
37. ^Hurst, G. S., Stewart, T. E., & Parks, J. E. (1970). Vacuum ultraviolet radiation and Jesse effects in the noble gases. Physical Review A. 2(5): 1717.
38. ^Parks, J. E., Hurst, G. S., Stewart, T. E., & Weidner, H. L. (1972). Ionization of the noble gases by protons: Jesse effects as a function of pressure. The Journal of Chemical Physics. 57(12): 5467-5474.
39. ^Hurst, G. S. (1974). Energy pathways, including the Jesse effect, in noble gases. Radiation Research. 59(2): 350-355.
40. ^Payne, M., Hurst, G., & Klots, C. (January 1975). Rate Processes Related to Jesse Effect in He. Bulletin of the American Physical Society. 20(2): 255-256.
41. ^Thonnard, N., & Hurst, G. (January 1971). Lifetime Measurements of VUV Argon Spectra at Intermediate and High Pressures. Bulletin of the American Physical Society. 16(4): 532.
42. ^Payne, M. G., Klots, C. E., & Hurst, G. S. (1975). Kinetic processes determining the time dependence of VUV emission in He. The Journal of Chemical Physics. 63(4): 1422-1428.
43. ^Kramer, S. D., Chen, C. H., Payne, M. G., Hurst, G. S., & Lehmann, B. E. (1983). Tunable VUV light generation for the low-level resonant ionization detection of krypton. Applied Optics. 22(20): 3271-3275.
44. ^Hurst, G. S., O'Kelly, L. B., Wagner, E. B., & Stockdale, J. A. (1963). Time‐of‐Flight Investigations of Electron Transport in Gases. The Journal of Chemical Physics. 39(5): 1341-1345.
45. ^Hurst, G. S., & Parks, J. E. (1966). Time‐of‐Flight Determinations of Electron Diffusion Coefficients and Electron Drift Velocities in Ethylene, Water Vapor, and in Hydrogen. The Journal of Chemical Physics. 45(1): 282-295.
46. ^Wagner, E. B., Davis, F. J., & Hurst, G. S. (1967). Time‐of‐Flight Investigations of Electron Transport in Some Atomic and Molecular Gases. The Journal of Chemical Physics. 47(9): 3138-3147.
47. ^Hurst, G., & Stockdale, J. (January 1964). Swarm Measurement of Cross Sections for Dissociative Electron Capture in Heavy Water, Chlorobenzene + Bromobenzene. Radiation Research. 22(1): 199.
48. ^Stockdale, J. A., & Hurst, G. S. (1964). Swarm Measurement of Cross Sections for Dissociative Electron Capture in Heavy Water, Chlorobenzene, and Bromobenzene. The Journal of Chemical Physics. 41(1): 255-261.
49. ^Christophorou, L. G., Compton, R. N., Hurst, G. S., & Reinhardt, P. W. (1965). Determination of Electron‐Capture Cross Sections with Swarm‐Beam Techniques. The Journal of Chemical Physics, 43(12), 4273-4281.
50. ^Christophorou, L. G., Hurst, G. S., & Hendrick, W. G. (1966). Swarm Determination of the Cross Section for Momentum Transfer in Ethylene and in Ethylene Mixtures. The Journal of Chemical Physics, 45(4), 1081-1085.
51. ^Hendrick, W. G., Christophorou, L. G., & Hurst, G. S. (1968). An Apparatus for Measurement of Electron Attachmant and Electron Swarm Drift Velocities at High Temperatures (No. ORNL-TM--1444). Oak Ridge National Lab, Tennessee.
52. ^Ritchie, R. H., & Hurst, G. S. (1959). Penetration of Weapons Radiation: Application to the Hiroshima-Nagasaki Studies. Health Physics. 1(4): 390-404.
53. ^Pace, N., Smith, R. E., & Hurst, G. S. (1959). Measurement of the residual radiation intensity at the Hiroshima and Nagasaki atomic bomb sites. Atomic Bomb Casualty Commission.
54. ^Ritchie, H., & Hurst, G. S. (1963). Penetration of Radiation from Nuclear Weapons: Applicability to the Hiroshima-Nagasaki Survey. Hiroshima Igaku (Japan), 16.
55. ^Hurst, G. S., Ritchie, R. H., Sanders, F. W., Reinhardt, P. W., Auxier, J. A., Wagner, E. B., Callihan, A. D., Morgan, K. Z. & Smith, J. W. (1960). Dosimetric investigation of the radiation accident, Vinča, Yugoslavia (No. TO/HS/22; A/AC. 82/G/L. 513). International Atomic Energy Agency, Vienna.
56. ^Hurst, G. S., Ritchie, R. H., Sanders, F. W., Reinhardt, P. W., & Auxier, J. A. (1961). Dosimetric investigation of the Yugoslav radiation accident. Health Physics. 5(3-4): 179-202.
57. ^Gusev, Igor A., Guskova, Angelina K., & Mettler, Fred A. (Eds.). (2001). Medical management of radiation accidents. CRC Press.
58. ^{{cite web|last=McLaughlin|first=Thomas P. |title=A Review of Criticality Accidents|publisher=Los Alamos National Laboratory|work=CSRIC|url=http://www.csirc.net/docs/reports/la-13638.pdf|page=96|quote=Radiation doses were intense, being estimated at 205, 320, 410, 415, 422, and 433 rem.74 Of the six persons present, one died and the other five recovered after severe cases of radiation sickness. |date=May 2000|display-authors=etal|archive-url=https://web.archive.org/web/20070926101253/http://www.csirc.net/docs/reports/la-13638.pdf|archive-date=2007-09-26}}
59. ^{{cite web|url=http://www.johnstonsarchive.net/nuclear/radevents/1958YUG1.html|title=Vinca reactor accident, 1958|first=Wm. Robert|last=Johnston|work=Database of radiological incidents and related events – Johnston's Archive|date=2005-09-14|accessdate=2012-07-02}}
60. ^Wright, H. A., Hurst, G. S., & Wagner, E. B. (1965). An Application of the Generalized Concept of Dosimetry to Space Radiations. NASA Special Publication, 71: 245.
61. ^Hurst, G. S. (1986). Feasibility of a 81Br (nu, e-) 81Kr solar neutrino experiment. NASA STI/Recon Technical Report N, 87, 18503.
62. ^Hurst, G. S., Garrett, W. R., Judish, J. P., Klots, C. E., McNeely, J. R., Payne, M. G., & Wagner, E. B. (1974). Atomic physics: microdosimetry (No. ORNL--4979). Oak Ridge National Lab., Tenn.(USA).
63. ^Turner, James E., Hamm, R. N., Hurst, G. S., Wright, H. A., & Chiles, M. M. (1985). Digital Characterisation of Particle Tracks for Microdosimetry. Radiation Protection Dosimetry. 13(1-4): 45-48.
64. ^Turner, James E., Hamm, R. N., Hurst, G. S., & Wright, H. A. (1985). A digital approach to neutron dosimetry and microdosimetry.
65. ^Hurst, G. S., Nayfeh, M. H., Young, J. P., Payne, M. G., & Grossman, L. W. (1977). Selective Single Atom Detection in a 1019 Atom Background. In Laser Spectroscopy III (pp. 44-55). Springer Berlin Heidelberg.
66. ^Hurst, G. S., Nayfeh, M. H., & Young, J. P. (1977). A demonstration of one‐atom detection. Applied Physics Letters, 30(5), 229-231.
67. ^Hurst, G. S., Nayfeh, M. H., & Young, J. P. (1977). One-atom detection using resonance ionization spectroscopy. Physical Review A, 15(6), 2283.
68. ^Hurst, G. S., Kramer, S. D., Bemis, C. E., & Young, J. P. (1978). Detection of single atoms in particle tracks (No. CONF-780534-3). Oak Ridge National Lab., Tenn.(USA).
69. ^Kramer, S. D., Bemis Jr, C. E., Young, J. P., & Hurst, G. S. (1978). Selective, laser one-atom detection of neutral prompt fission fragments. Journal of the Optical Society of America (1917–1983), 68, 657.
70. ^Kramer, S. D., Bemis, C. E., Young, J. P., & Hurst, G. S. (1978). One-atom detection in individual ionization tracks. Optics letters, 3(1), 16-18.
71. ^Hurst, G. S., Kramer, S. D., Payne, M. G., & Young, J. P. (1979). A Generalization of One-Atom Detection. Nuclear Science, IEEE Transactions on, 26(1), 133-138.
72. ^Hurst, G. S., Payne, M. G., Kramer, S. D., & Young, J. P. (1979). Resonance ionization spectroscopy and one-atom detection. Reviews of Modern Physics, 51(4), 767.
73. ^Hurst, G. S. (1980). One-atom detection. J. Opt. Soc. Am., vol. 70, page 618, 70, 618.
74. ^Iturbe, J., Allman, S. L., Hurst, G. S., & Payne, M. G. (1982). Fluctuation experiments on atomic and molecular systems using the one-atom detector. Chemical Physics Letters, 93(5), 460-467.
75. ^Payne, M. G., & Hurst, G. S. (1985). One-atom detection and statistical studies with resonance ionization spectroscopy. Analytical Laser Spectroscopy (pp. 189-195). Springer US.
76. ^Hurst, G. S., Chen, C. H., Kramer, S. D., Payne, M. G., & Willis, R. D. (January 1983). Radiochemical solar neutrino experiment using/sup 81/Br (nu, e/sup-/)/sup 81/Kr. In AIP Conf. Proc.;(United States) (Vol. 96, No. CONF-820989-). Oak Ridge National Lab., TN.
77. ^Hurst, G. S., Chen, C. H., Kramer, S. D., Payne, M. G., & Willis, R. D. (March 1983). A Radiochemical solar neutrino experiment using 81Br (ν, e) 81Kr. Science Underground. 96(1): 96-104.
78. ^Hurst, G. S., Chen, C. H., Kramer, S. D., Cleveland, B. T., Davis Jr, R., Rowley, R. K., Gabbard, Fletcher & Schima, F. J. (1984). Feasibility of a Br-81 (ν, e−) Kr-81 Solar Neutrino Experiment. Physical review letters. 53(11): 1116.
79. ^Hurst, G. S., Chen, C. H., Kramer, S. D., & Allman, S. L. (January 1985). A proposed solar neutrino experiment using 81Br (ν, e−) 81Kr. Solar Neutrinos and Neutrino Astronomy. 126(1): 152-161.
80. ^Hurst, G. S., Allman, S. L., Chen, C. H., Kramer, S. D., Thomson, J. O., & Cleveland, B. (1985). Feasibility of 81Br (v, e−) 81Kr Solar Neutrino Experiment. Laser Spectroscopy VII (pp. 45-48). Springer Berlin Heidelberg.
81. ^Hurst, G. S. (1986). Feasibility of a 81Br (nu, e-) 81Kr solar neutrino experiment. NASA STI/Recon Technical Report N, 87, 18503.
82. ^Hurst, G. S., Jones, H. W., Thomson, J. O., & Wunderlich, R. (1985). Magnetic monopole detectors based on He (2 3 S). Physical Review A. 32(3): 1875.
83. ^Hurst, G. S., Payne, M. G., Nayfeh, M. H., Judish, J. P., & Wagner, E. B. (1975). Saturated Two-Photon Resonance Ionization of He (2 S 1). Physical Review Letters. 35(2): 82.
84. ^Payne, M. G., Hurst, G. S., Nayfeh, M. H., Judish, J. P., Chen, C. H., Wagner, E. B., & Young, J. P. (1975). Kinetics of He (2 S 1) Using Resonance Ionization Spectroscopy. Physical Review Letters. 35(17): 1154.
85. ^Hurst, G. S., Payne, M. G., & Wagner, E. B. (1976). Resonance ionization for analytical spectroscopy (No. US 3987302). Union Carbide Corp.
86. ^Nayfeh, M. H., Hurst, G. S., Payne, M. G., & Young, J. P. (1978). Observation of New Satellites in the Cs-Ar System Using Resonance Ionization Spectroscopy. Physical Review Letters. 41(5): 302.
87. ^Hurst, G. S., Payne, M. G., Kramer, S. D., & Young, J. P. (1979). Resonance ionization spectroscopy and one-atom detection. Reviews of Modern Physics. 51(4): 767.
88. ^Young, J. P., Hurst, G. S., Kramer, S. D., & Payne, M. G. (1979). Resonance ionization spectroscopy. Analytical Chemistry. 51(11): 1050A-1060A.
89. ^Hurst, G. S., Payne, M. G., Kramer, S. D., & Young, J. P. (1979). Resonance ionization spectroscopy with amplification. Chemical Physics Letters. 63(1): 1-4.
90. ^Kramer, S. D., Young, J. P., Hurst, G. S., & Payne, M. G. (1979). Resonance ionization spectroscopy of lithium. Optics Communications. 30(1): 47-50.
91. ^Hurst, G. S., Payne, M. G., Kramer, S. D., & Young, J. P. (1979). A summary and review of the early history of RIS. Reviews of Modern Physics. 51, 767.
92. ^Chen, C. H., Hurst, G. S., & Payne, M. G. (1980). Direct counting of Xe atoms (with RIS). Chemical Physics Letters. 75(3): 473-477.
93. ^Beekman, D. W., Callcott, T. A., Kramer, S. D., Arakawa, E. T., Hurst, G. S., & Nussbaum, E. (1980). Resonance ionization source for mass spectroscopy. International Journal of Mass Spectrometry and Ion Physics. 34(1): 89-97.
94. ^Chen, C. H., & Hurst, G. S. (1980). Resonance ionization detection of Xe atoms. J. Opt. Soc. Am. (70): 659.
95. ^Franks, L. A., Borella, H. M., Cates, M. R., Hurst, G. S., & Payne, M. G. (1980). Detection of trace amounts of transuranics by resonance ionization spectroscopy of noble gases. Nuclear Instruments and Methods. 173(2): 317-322.
96. ^Hurst, G. S. (1981). Resonance ionization spectroscopy. Analytical Chemistry. 53(13): 1448A-1456A.
97. ^Hurst, G. S., Payne, M. G., Chen, C. H., Willis, R. D., Lehmann, B. E., & Kramer, S. D. (1981). Resonance Ionization Spectroscopy: Counting Noble Gas Atoms. Laser Spectroscopy V (pp. 59-66). Springer Berlin Heidelberg.
98. ^Payne, M. G., Chen, C. H., Hurst, G. S., Kramer, S. D., Garrett, W. R., & Pindzola, M. (1981). Resonance ionization spectroscopy schemes for Ar, Kr and Xe. Chemical Physics Letters. 79(1): 142-148.
99. ^Payne, M. G., Chen, C. H., Hurst, G. S., & Foltz, G. W. (1981). Applications of resonance ionization spectroscopy in atomic and molecular physics. Advances in atomic and molecular physics. (17): 229-274.
100. ^Hurst, G. S., Kramer, S. D., & Lehmann, B. E. (January 1982). Resonance ionization spectroscopy for low-level counting. ACS Symp. Ser.;(United States) (Vol. 176). Oak Ridge National Lab, TN.
101. ^Whitaker, T. J., & Hurst, G. S. (1982). Applications of resonance ionization spectroscopy in neutron dosimetry.
102. ^Chen, C. H., & Hurst, G. S. (October 1983). Noble Gas Detection Using Resonance Ionization Spectroscopy and a Quadrupole Mass Spectrometer. 27th Annual Technical Symposium (pp. 2-7). International Society for Optics and Photonics.
103. ^Chen, C. H., Kramer, S. D., Allman, S. L., & Hurst, G. S. (1984). Selective counting of krypton atoms using resonance ionization spectroscopy. Applied Physics Letters. 44(6): 640-642.
104. ^Chen, C. H., Hurst, G. S., & Payne, M. G. (1984). Resonance ionization Spectroscopy: inert atom detection. Progress in Atomic Spectroscopy Part C (pp. 115-150). Springer US.
105. ^Hurst, G. S. (1984). Application of resonance ionization spectroscopy in particle physics. Resonance Ionization Spectroscopy 1984 (Vol. 1, p. 309).
106. ^Iturbe, J., Allman, S. L., Hurst, G. S., & Payne, M. G. (1984). Experiments on statistical mechanics using resonance ionization spectroscopy. (No. CONF-840449-13). Oak Ridge National Lab., TN (USA).
107. ^Fairbank Jr, William M., Hurst, G. S., Parks, J. E., & Paice, C. (1984). Searches for fractional charges and superheavy atoms. Resonance Ionization Spectroscopy 1984 (Vol. 1, p. 287).
108. ^Payne, M. G., & Hurst, G. S. (1985). Theory of resonance ionization spectroscopy. Analytical Laser Spectroscopy (pp. 183-188). Springer US.
109. ^Kramer, S. D., Hurst, G. S., & Chen, C. H. (1985). Analysis of 81Kr in groundwater using laser resonance ionization spectroscopy. Oak Ridge National Lab, TN (USA).
110. ^Payne, M. G., & Hurst, G. S. (1985). Weak interaction studies using resonance ionization spectroscopy. Analytical Laser Spectroscopy (pp. 197-202). Springer US.
111. ^Hurst, G. S., & Morgan, Colyn Grey. (1986). Resonance ionization spectroscopy 1986.
112. ^Hurst, G. S. (1986). Trends in resonance ionization spectroscopy. Tennessee Univ., Knoxville (USA). Inst. of Resonance Ionization Spectroscopy.
113. ^Kramer, S. D., Hurst, G. S., Chen, C. H., Payne, M. G., Allman, S. L., Phillips, R. C., ... & Thonnard, N. (1986). Analysis of 81Kr in groundwater using laser resonance ionization spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 17(5): 395-401.
114. ^Hurst, G. S., Kutschera, W., Oeschger, H., Korschinck, G., Donahue, D. S., Litherland, A. E., Ledingham, K. & Henning, W. (1987). Detection of Single Atoms by Resonance Ionization Spectroscopy [and Discussion]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 323(1569): 155-170.
115. ^Hurst, G. S., & Payne, M. G. (1988). Elemental analysis using resonance ionization spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy. 43(6): 715-726.
116. ^Parks, J. E., Schmitt, H. W., Hurst, G. S., & Fairbank, W. M. (1983). Sputter-initiated resonance ionization spectroscopy. Thin Solid Films. 108(1): 69-78.
117. ^Parks, J. E., Schmitt, H. W., Hurst, G. S., & Fairbank Jr, W. M. (October 1983). Ultrasensitive elemental analysis of solids by sputter initiated resonance ionization spectroscopy. In 27th Annual Technical Symposium (pp. 32-41). International Society for Optics and Photonics.
118. ^Parks, J. E., Schmitt, H. W., Hurst, G. S., & Fairbank Jr, W. M. (1984). Sputter initiated RIS (SIRIS) for analysis of semiconductor impurities. Resonance Ionization Spectroscopy. 1984(1): 167.
119. ^Fairbank Jr, W. M., Riis, E., LaBelle, R. D., Parks, J. E., Spaar, M. T., & Hurst, G. S. (1986). A search for new elementary particles using sputter-initiated resonance ionization spectroscopy. Resonance ionization spectroscopy. 1986.
120. ^Hurst, G. S., Payne, Marvin G., & Wagner, Edward B. (1976). Resonance ionization for analytical spectroscopy. (No. US 3987302). Union Carbide Corp.
121. ^Hurst, G. S., Payne, M. G., Chen, C. H., & Parks, J. E. (17 January 1984). Method and apparatus for noble gas atom detection with isotopic selectivity. U.S. Patent No. 4,426,576. Washington, DC: U.S. Patent and Trademark Office.
122. ^Hurst, G. Samuel, James E. Parks, James E. & Schmitt, Harold W. (10 April 1984). Method of analyzing for a component in a sample. U.S. Patent No. 4,442,354. Washington, DC: U.S. Patent and Trademark Office.
123. ^Allman, S. L., Thonnard, N., & Hurst, G. S. (14 April 1987). Method and apparatus for sensitive atom counting with high isotopic selectivity. U.S. Patent No. 4,658,135. Washington, DC: U.S. Patent and Trademark Office.
124. ^Payne, Marvin G., Thonnard, Norbert and George S. Hurst. (15 September 1987). Double pulsed time-of-flight mass spectrometer. U.S. Patent No. 4,694,167. Washington, DC: U.S. Patent and Trademark Office.
125. ^Hurst, G. S., Schmitt, H. W., Thonnard, N., & Whitaker, T. J. (13 October 1987). Sensitive, stable, effective at low doses and low energy. U.S. Patent No. 4,699,751. Washington, DC: U.S. Patent and Trademark Office.
126. ^Hamm, R. N., Hunter, S. R., Hurst, G. S., Turner, J. E., & Wright, H. A. (5 June 1990). Ionizing radiation detector system. U.S. Patent No. 4,931,653. Washington, DC: U.S. Patent and Trademark Office.
127. ^Hurst, G. S. (25 June 1991). HVAC system. Radon monitor and control system based upon alpha particle detection. U.S. Patent No. 5,026,986. Washington, DC: U.S. Patent and Trademark Office.
128. ^Hurst, G. S., Wright, H. A., & Hopke, P. K. (20 April 1993). System for determining health risk due to radon progeny and uses thereof. U.S. Patent No. 5,204,528. Washington, DC: U.S. Patent and Trademark Office.
129. ^Hurst, G. S., Wright, H. A., & Morris, J. D. (19 April 1994). Instrument simulator system. U.S. Patent No. 5,304,065. Washington, DC: U.S. Patent and Trademark Office.
130. ^Hurst, G. S., Wright, H. A., & Morris, J. D. (13 June 1995). Instrument simulator system. U.S. Patent No. 5,423,683. Washington, DC: U.S. Patent and Trademark Office.
131. ^Hurst, G. Samuel, Ritchie, Rufus, Bouldin, Donald W. & Warmack, Robert. (18 November 2003). Touch screen based topological mapping with resistance framing design. U.S. Patent No. 6,650,319. Washington, DC: U.S. Patent and Trademark Office.
132. ^Hurst, G. S., Ritchie, R. H., Warmack, R. J., Bouldin, D. W., & Kent, J. C. (4 September 2007). Touch sensor with non-uniform resistive band. U.S. Patent No. 7,265,686. Washington, DC: U.S. Patent and Trademark Office.
133. ^Hurst, G. S., Ritchie, R. H., Bouldin, D. W., & Warmack, R. J. (21 September 2010). Touch screen with relatively conductive grid. U.S. Patent No. 7,800,589. Washington, DC: U.S. Patent and Trademark Office.
134. ^Hurst, G. S., Warmack, R. J., Richie, R. H., Bouldin, D. W., & Ritchie, D. (31 May 2011). Multiple-touch sensor. U.S. Patent No. 7,952,564. Washington, DC: U.S. Patent and Trademark Office.
135. ^Hurst, G. S., & Parks, J. E. (1970). An Electrical Sensor of Plane Coordinates. Review of Scientific Instruments. 41(12): 1846–1848.
136. ^Hurst, G. S. (1988). Development of an improved detector for krypton-81 and other noble-gas isotopes (No. PB-91-225722/XAB). Pellissippi International, Knoxville, TN (United States).
137. ^Hurst, G. S. (1990). Assessment of research needs for laser technologies applied to advanced spectroscopic methods (No. DOE/ER/30131-T9). Consultec Scientific, Inc., Knoxville, TN (USA).
{{Subject bar
| portal1=Nuclear technology
| portal2=Physics
| portal3=History of science
| portal4=Kentucky
| portal5=United States
| portal6=Mathematics
| portal7=Computer science
| portal8=Biography
}}{{authority control}}{{DEFAULTSORT:Hurst, George Samuel}}

22 : American inventors|Health physicists|1927 births|2010 deaths|Health Physics Society|Members of the American Physical Society|Oak Ridge National Laboratory people|Nevada Test Site nuclear explosive tests|NASA people|Touchscreens|University of Kentucky faculty|University of Tennessee alumni|Florida State University faculty|Hiroshima|Nagasaki|People from Bell County, Kentucky|Berea College alumni|University of Kentucky alumni|21st-century physicists|20th-century American physicists|21st-century American scientists|Mathematicians from Kentucky

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 11:00:45